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Who inspire me to look ahead with joy and zest.
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To the truly educated – reader, gracious, assertive, humanist, 
and proud citizen of the society.
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Dear Readers,

You must know that this book is in a genre of its own – an academically 
rigorous book for us all globally. For far too long, academic books 
have targeted only a fraction of the population; even scholastic 
achievement is taken to be the preserve of the gifted ones. 

The tone, organisation of content, conceptual intensity, and 
expanse of the book qualify it to be an academic work. However, 
the language is akin to literary writing, and the presentation is 
‘textbookish’ to facilitate an inalienable grip over the flow and 
substance.

Yet, in the jest to enliven academic concepts, their taut boundaries 
may have been infiltrated. 

Expectedly, the book would not be a familiar feel for all readers; it 
straddles across the unbridged academic and ‘trade’ (general public) 
genres.

We wish hope this inventive format of the book is appreciated.



– Ramjee Prasad
Unlock Your Personalization 

Aalborg University Press (March 1, 2012) 



This book is also one sequel to ‘Unlock Your Personalization.’ 
One end of this book is ‘Mathematising (our) thinking’ to root 
mathematics as a language of all social institutions and processes. 

‘Unlock Your Personalization’ promotes an innovative and novel 
approach to achieving a good quality of life.

Life is short, and its limits are apparent. Living should bring 
happiness and pleasure, but most people have to cope with enormous 
problems stemming from heavy workloads, stress, and anxiety. In 
our post-modern, techno-science world, every effort is being made 
to achieve a high standard of living. Still, few people find an effective 
solution for relieving stress and achieving their objectives in life. 

– Ramjee Prasad
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Preface
Thinking Humankind, All

Swami Vivekananda prophetically called upon us to ‘make men 
first’. He reminded us of the on-the-ground truth that even if 
governments give us all we must have, ‘where are the men who are 
able to keep up the things demanded.’ Unsurprisingly, the italicised 
phrase encapsulates the most crippling crisis before humankind 
a century after its articulation by him. The phrase quite sits at the 
heart of what the book is set to catalyse – (human) development 
revolution – by galvanising us all to be spirited humans in the ever-
intensifying Sci-Tech (Science and Technology) and AI (Artificial 
Intelligence) era.    

More simply stated, this book is about you, your family, and 
the community you are nested in. It is most peerlessly so along 
multiple dimensions. The book is about contemporising you – your 
knowledge and skills – to the technology of the times – Artificial 
Intelligence (AI). The book will seed in you the exemplary life 
to thrive in the fast-realising world of inorganic intelligence, an 
unprecedentedly malleable future.  The book will lay bare the 
designs and destinations on the Fourth Industrial Revolution (4IR), 
or Industry 4.0 highway.  

The book also decodes why 4IR is struggling to hold its ground, 
let alone accomplish its promise, and how the context of your 
family and community cannot be future-proofed if 4IR fails in 
revolutionising social infrastructure – education and health for all 
8 billion of us, and the (economic) dignity of all adults. 
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The only business of societies and humankind is same-outcome 
education of all children@18. Health is on the cusp of education 
and economics. 4IR is our last opportunity to trigger and sustain an 
unexceptionally global socio-economic renaissance.    

Educated blindness – A world hiding in plain sight
Inattentional blindness is a biological limitation, our ‘brain’s fault’; 
we cannot really blame ourselves. It is personal in nature, and 
there is not even a remote chance that two random people could 
have overlapping inattention to similar things over different times 
and spaces. On the whole, it all does even out, and no loss or hurt 
visits anyone; for example, things that get the attention of the sexes 
are complementary to some extent, and together, a couple covers 
up for one another (one may miss blue tea roses, the other violet 
tea roses in a walk through a garden). The worst manifestation of 
inattention is mostly embarrassment.

There is a social correspond of inattentional blindness, a 
creation of our socio-cultural conditioning, our ‘education’s fault’. 
Unsurprisingly, it is best addressed as ‘educated blindness’, most 
acutely and almost universally noticeable among those formally 
educated, and the longer the formal education, the more likely is 
the ‘affliction’ with educated blindness. The only apparent similarity 
'educated blindness' bears with its biological twin is that we cannot 
really blame the educated individuals; the cultural as well as the 
formal education system is riddled with holes. 

Educated blindness is visible and veritable conditioning of 
thinking, learning, observation, acting to preserve (more significant, 
long term) self-interests and assertion of moral being. Its worst 
manifestation is thin-cultured adults, globally with an iron-
curtained worldview, a rather narrow worldview, and increasingly 
transmitted and transplanted worldwide with the help of the 
most uniform social institution across the world, the K-12 formal 
education system. 
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More specifically, educated blindness is reflected in the substantive 
majority and the ‘toppers’ of the formal education system falling into 
a new ‘average’ – individuals out to pursue similar kinds of careers, 
having the same meaning of success in career (and not seeking 
professional stature), same meaning of being rich, the same way of 
becoming rich, marginalised larger socio-cultural identity, a culture 
unto themselves and so on. It is the reason behind indifference to 
unconscionable inequity in wealth and income, fractured society, 
treating climate mitigation as a new gold rush rather than a social 
and humanitarian challenge, ‘professionalisation’ of the social sector – 
education, health and civil society, and many things else.

Educated citizenship – The vital soft-infrastructure 
History is sharp about each new economic revolution stepping 
up the demands on humans. The era of the driverless cars on 
the street and the generative AI of the next decade would still 
need (appropriately) educated humanity. For instance, people 
‘educated to be doing something joyous’ while being driven 
around, people educated to reinvent their businesses around 
driverless vehicles, people educated to feel productive and 
wanted in new ways, people educated to add value to the outputs 
of generative AI, and more would be in demand. We have to 
recontextualise what it means to be educated. 

However, it seems making humans (raising adults out of infants) is 
now a long-lost art for humanity. The more ‘developed and advanced’ 
the nation, the more vigorous and devoted the institutionalisation of 
this ‘phase of raising, educating’ children. Education is the name of 
all that happens to make a ‘dignified, cultured adult’ out of infants. 
Human infants do not grow into humans on biological DNA (all 
other animal infants do); it takes (more than) a village to raise 
every child over two decades. Education is 100% social – among 
role-model adults, peers (ideally not same-age), and the ‘real world’ 
(nature and community). 
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The first, primary goal of nurturing educated adults is 
to ensure their economic dignity, without exception. The 
secondary, but not lesser, goal is thickly/deeply cultured adults 
who live and enrich their chosen socio-cultural contexts, such 
as active civic constitutionalism.

4IR – The omnipotent hard-infrastructure
To avoid getting the wrong end of the stick, let us begin by 
emphasising that 4IR represents an entire array of digitised  
technologies, irrespective of how it is formally defined across 
institutions and experts. The digital foundation of 4IR (including 
Big Data), together with AI, is materialising a sea of appropriate 
technologies to best empower our individual choices. Many of these 
technological imperatives would require the frontier of science to 
be expanded like never before and also multiply the intensity of the 
mathematisation of science (and social sciences, and everything else 
too).  Fortunately, research and innovation processes and resources 
are transforming to seed unprecedented development of science 
and technology. 4IR is a dream infrastructure for a socio-economic 
revolution for all, a first for humankind. 

Society 5.0 – Social outcome of 4IR
Society 5.0 is defined as a human-centred society that balances 
economic advancement with the resolution of social problems by 
a system that seamlessly integrates cyberspace and physical space. 
The term “Society 5.0” was introduced by the Japanese government 
as part of their “Fifth Science and Technology Basic Plan” in 2016 to 
refer to society that evolves with 4IR. The plan presents the hunting 
society (Society 1.0), agricultural society (Society 2.0), industrial 
society (Society 3.0), and information age society, 4IR (Society 4.0). 
Much like the way 4IR represented the entire technoscape of the 
times ahead, the gamut of the socio-cultural world associated with 
4IR is represented by Society 5.0.
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A bit of economic history should help us understand the genesis 
of Society 5.0 and how a more organic collocation of social and 
economic development is non-negotiable. The Iron Age triggered 
a sense of private ownership of anything (land, forests in those 
times); iron swords, for example, could cut trees to create fields, and 
animal-drawn carts with iron-rimmed wheels could go way beyond 
the communal land to claim private ownership. Later, iron weapons 
made larger-scale war and killing possible, and the sense of private 
property extended to taking away what belonged to others. Unlike 
the weapons in the Iron Age, Bronze Age weapons were heavier and 
did not have strength or sharpness or iron weapons. As pertinently, 
the driver of ‘privatising properties’ was the appropriation of 
extra (societal) resources and later deployment of the differential 
resources for gaining property.  

The race to private property has not abetted even after 3000 years. 
Worst, the ownership of immeasurable tracts of land (and building 
as a proxy for space similar to land) is the hallmark of being rich. 

Almost as a default implication of private property, economic 
development, and the good of the entire society have never 
reconciled to date. 

Economic development has come to mean a varying degree, 
exploitation of communal/societal resources and trust for 
‘privatising the same’, to benefit a few at the cost of the entire society 
(to which the few may belong). Resource differential still rules the 
roost, and for all the time in history, it has almost always been the 
monetary capital. Interestingly, around the cusp of 3IR and 4IR, 
broadly between the mid-1990s and early 2010s, knowledge was 
expected to be an equal resource differential, but it is almost back to 
the historical reality of monetary capital again.

Another (very) long story short, it is rightful to hope that in the 
4IR Age, the critical resource differential shall be individuals – their 
ingenuity, industry, and integrity. In other words, the education 
system is in its broadest (true) sense. The entire socio-cultural 
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and economic ecosystem is now almost equally accessible to all 
through the Personal Multimedia Communication revolution. In 
effect, let us hope and work towards the differential being what 
individuals can imagine of 4IR and value creation through it for 
self, family, community, as well as humanity (remember, it is a 
global village now.)

Interestingly, the website of the Office of the Cabinet, 
Government of Japan, mentions that Japan aims to be the first state 
to achieve a human-centred national society, named Society 5.0 
(following a particular hierarchy of the evolution of humankind). 
Such a society could be visualised as one that will create and 
nurture a socio-economic environment that best facilitates one 
and all to enjoy a high quality of life, exemplified by proactive and 
productive citizens, every one of them. It elaborates that innovative 
culture, diverse technologies, and the social integration of the two 
into the fabric of the nation are how Society 5.0 will crystallise.   

Indeed, over to 4IR and popular imagination.    
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‘Unite to Regulate (Generative) AI’ is the new battle hymn of the 
global political rhetoric, unseating climate change in just a matter 
of months. 4IR is defying its DNA even after a decade in action – it 
is turning (net) producers to (net) consumers, crushing economic 
dignity to dust for an ever-increasing fraction of humankind. 

AI and 4IR are inherently about comprehensively personalising 
the world for every one of us, to empower every one of us to be best 
educated, healthy, and live with dignity in a truly democratic society 
(and nation). The two embody the grandest designs for an assuredly 
happy earth.

Instead, we are staring at an unimaginable and exceptionally 
collective future – adults, families, communities, and societies 
disabled from powering their survival and growth. The most 
gratifying thread throughout history is that families and communities 
made ends meet, war or peace. All (able) adults were net producers 
and paid some form of taxes to the state. It is unnatural to humanity 
to even think of something like universal basic income to a fast-
growing fraction of net consumer adults.

Of course, the book is all about negating this possibility. 
Mathematised thinking is humanity’s gravest miss. We present a 
peerless action plan to mathematise our thinking. To enable every 
one of us to plug into the truly global and omnipotent AI soft 
infrastructure and the next-generation 4IR infrastructure. Satya 
Nadella emphasises the need for a billion developers, considering it 

Section I

AI and 4IR – An inexplicable crossroads for 
humankind
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a democratising tool to facilitate easier access to new technology and 
knowledge, simplifying the learning curve. Lest ‘a billion developers’ 
is misread to mean ‘a billion software/AI professionals,’ we wish to 
assert that it is best read as ‘a billion thinking professionals.’

A peerless human revolution is ahead of us!
Fortuitously, the mathematical rooting of this revolution 

guarantees its infallibility. Mathematics may just be the most explicit 
self-organising consciousness in us. It is anchored in the ways and 
working of the world around us as it gathers mass and momentum 
almost autonomously, on its own devices. The mathematisation of 
humankind is unstoppable in its reach and catalytic drivers.
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Humankind is Mathematising
Soaring discovery, invention of Order 

The place of mathematics in society has never been in question. 
The pedestal accorded to mathematicians across societies volumes 
about it. Mathematical knowledge and skill are considered such 
a suprahuman occurrence that even a poor academic record in 
mathematics is some kind of a badge of quality of being ‘normal’, 
being creative in some ways. People feel cringed at not being good 
at drawing, singing, or dancing, but being poor at mathematics 
is a matter to bond over. Apparently, mathematical handicaps 
seem to bear little correlation with professional success. To top it 
all, mathematics skills need not be personally mastered because 
mathematical computations enjoy the benefit of high integrity. 
Misdemeanours and even frauds never go undetected for long, 
especially after due forensic examination. 

However, all this leniency with lack of success in mathematics 
education started to pinch as the Third Industrial Revolution, 
3IR, peaked towards the last decade of the twentieth century. 
Chorus for improving math education globally has been getting 
shriller ever since. 3IR matured with analogue electronics turning 
to digital electronics; semiconductors, personal computers, 
internet, mobile phones, robotics, 3D printing, and the like 
were the typical innovations of this era. 3IR brought down 
barriers to opportunities and resources to ignite knowledge-led, 
small-business entrepreneurial ventures to compete with and 
complement corporates. 
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The Fourth Industrial Revolution, 4IR, has progressed the 
techno-economic cart to bring more disruptive, global, and personal 
force to innovations. 4IR emerging technologies, such as IoT, 5G, 
Big Data, Self-organising supply chains, Next-generation (DNA) 
Sequencing, Artificial Intelligence, and Blockchain, are significantly 
differentiable from the Third Industrial Revolution, 3IR and the 
Second Industrial Revolution, 2IR. Technologies for being duly 
more general and original. The more general a technology, the more 
flourish they bring to technical progress and economic growth. 
The more original a technology, the more refined it is; using more 
diverse domains of knowledge in technology is one way to make it 
more original. Originality and generality trigger newer products/
services and newer markets/people, respectively; for instance, 
generative AI has caught the imagination of employers for surgical 
excision of their customer service teams, just as some rudimentary 
AI application is already reaching all 3 billion Internet users. 

It must be admitted that these technologies are similar to their 
3IR roots. However, their extra thrust lies elsewhere – more 
science (new and refined) and more rapid innovations (shorter 
‘Technology Cycle Time’). Technology Cycle Time is broadly the 
period in which technology lives in its original suit. It involves the 
invention of technology, its justification as superior, purchase and 
deployment, sustenance/maintenance, and till the emergence of 
a better technology. In a way, 4IR is a ‘general purpose (sci-tech) 
ecosystem’, so vastly expansive that it will underpin infinite ‘plug 
and play’ choices for people.     

Soft is finally the hard, new power
The feminisation of humanity is undeniably set. Multiple gender 
recognition is steadily mainstreaming. Corporates are softening 
institutional culture to retain one and all, despite customers picking 
up the cost of the slack (is there ever a free lunch). The notion of soft 
power still has its believers in the conduct of international relations, 
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especially made possible in the times – of collective climate response, 
the Internet, global supply chains, migrations, etc. In many sections 
of societies across nations, soft is becoming quite aspirational, being 
equated with being wise. 

The soft power in  the digital age is on another plane. 3IR was hard 
powered, and 4IR is soft powered – driven by mostly soft – software 
codes, digitalised data, mathematical models, self-correcting codes, 
cloud storage, non-resident stored procedure codes, soft reboots, 
soft memory boxes, and more, and new softer dimensions. 

Is there a softer of the soft? Yes, mathematical models! Besides, 
mathematical objects (numbers to proofs) are the steel of every 
example of the aforementioned soft dimensions.  

Indeed, as 4IR becomes an integral part of all of us, it is no 
exaggeration that humankind is mathematising.

The shreds of evidence of steadily mathematising humankind are 
overwhelming. 

Technology – The embodied mathematics
Technology is the outcome of applying established scientific 
knowledge at that point in time. Technology could be valuable as 
tangible products or intangible services (such as software codes). 
But tangible (such as a water tap or a pen) or otherwise (such as 
Internet search engines), all technologies are mathematically 
controlled and determined. For instance, every kind of pen has a 
predetermined flow of ink, an acceptable range of pressure on the 
writing tip, chosen measures of grip/holding area, and more; any 
sudden change in these mathematically determined parameters 
would make the pen unsuitable. The deeply mathematical colour of 
Google’s search engine is a good read.

The Google search engine needs no introduction; it may be the 
most popular technology we use. It is rather common knowledge 
that the engine uses a simple arithmetical count, called PageRank, 
to develop a ‘relative order’ of the importance of webpages of 



12     Humankind is mathematising 

millions of websites. For the curious, the PageRank algorithm does 
not ‘see’ the contents of web pages for ranking, it uses the popularity 
of the webpages – the link structure, how frequently the webpages 
are called, or hyperlinked by other webpages. 

Mathematically, PageRank ends up assigning webpages a score 
between 0 and 1 (a probability). Hence, a PageRank of 0.5 would 
imply that there is a 50% chance that a click on a link (for certain 
keywords) would end up on that webpage. There is more – the 
computation of the PageRank score is not a simple probability 
computation, and it keeps evolving (making us all constantly 
guessing the exact algorithm.)

PageRank is a particular patented process of (web) page ranking, 
and Google also uses other ways of ranking pages, such as the 
mathematical model called Markov chain (a model is simply a 
quantitative relationship of varying things, such as the formula for 
the circumference of a circle in terms of its radius). Markov chain 
is also based on probability; it offers what is more like a sequence 
of possible situations, apparently random, that a given situation 
may transition into, with probability of occurrence of each of the  
situations. It is widely used for predicting changes, especially in 
those situations that change with time. 

Its value is its simplicity – it predicts the next situation or  step 
based only on the current situation, not how it was reached. 
Markov chain so mathematises the relationship of the change that 
it is suitable for making decisions in real-time, such as developing 
options of routes to take in a traffic jam, or communication 
transmission routes in a network. The mathematical model is such 
that the quality of the predictions, based just on the current state 
of a situation, is as good as if the predictions were based on the 
knowledge of ‘all the past states’ of the situation.  

Public key encryption is the mathematics behind Blockchain. 
One of the most popular blockchain network applications – the 
cryptocurrencies – are so mathematically founded that they may 
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be thought of as ‘mathematical money’, their creation and value 
sustenance is a mathematician’s delight. It involves very complex 
mathematics and computational methods. Expectedly, it has 
developed mathematical models that have applications beyond the 
cryptocurrencies; the models used for pricing cryptocurrencies are 
so expansive and exhaustive that they could be used to estimate the 
‘market (or reasonable) value (price)’ of many things.  

The basic knowledge of the association of calculus to 
everything that is not straight and standard geometry prompts 
that 3D printing technology must be drenched in mathematical 
soundness. The dynamical properties of objects to be 3D printed, 
such as the strength of the initial conditions/steps/formations, 
shapes, stability of the whole print, and the sharpness of the 
contours, are just some dimensions that must stand the scrutiny 
of mathematical modelling.  Differential equations are extensively 
used in the software used in 3D printing.

There can be no discussion on technology without taking a peek 
into how TikTok redefined timelines to reach the top of social 
applications. Eleanor Cummins, a freelance science journalist 
and an adjunct professor at New York University, brands TikTok’s 
algorithm as ‘all-knowing’, and goes on to summarily contrast with 
Facebook. To her, ‘whereas Facebook asks you to set up a profile, and 
hand over a treasure trove of personal information in the process, 
TikTok simply notices—or seems to.’  

 TikTok may be the best showcase of how Linear Algebra, a 
relatively simpler mathematics, is rightly recognised as the mind 
of machines (help ‘machines learning’.) In this context, Eleanor is 
so right in saying that mathematics has ‘flattened humanity into a 
series of codes,’ it is the invisible hand at work acting more like a 
supernatural force moving and shaking all things around us.  

New mathematical modelling is redefining medical diagnostics. 
For instance, the design of MRI machines is such that it is 
problematic for claustrophobic patients, and it is noisy for all. 
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Speeding up the scanning process has been at the top of the MRI 
research agenda. Emerging advances in mathematics came to rescue 
patients, doctors, and biomedical researchers. Mathematics made  
high-fidelity compressed sensing a reality by compressing patterns 
of ‘0’ in the captured digital images, a technique commonly used 
in reducing the ‘size’ of MP3 and JPEG files. MRI scans that once 
took 5 minutes can now be carried out in 30 seconds using data 
compression models.

Mathematics is more directly touching our lives by the day. 

Science – The divided house
(Natural) Science is the body of knowledge that codifies the 
(universal) secrets of the living and non-living nature as it operates 
in, on, and around earth. It is evenly split between the mathematised 
science (physics and most of chemistry) and the descriptive science (a 
good part of biology). It must be added that all biological and medical 
technology is mathematised, by definition; drugs, blood tests, scans, 
etc. are deterministic when matching with clinical diagnosis. 

Mathematics is already the only language of physics, and there 
is a thriving community of mathematical physicists focused on the 
mathematical foundations of theoretical physics. Mathematical 
concepts and objects are the means of thought experimenting 
in theoretical physics. Any discovery and development in 
physics are automatically mathematised, whether theoretical 
or experimental; viable experimental setups are the work of 
technology, mathematics. A leading area of research in physics, 
quantum mechanics, is already such that a rigorous description of 
quantum mechanics is purely mathematical. 

The story of theoretical chemistry is  similar; mathematics is the 
means of its thought experiments. Also, it borrows from physics, 
mathematics, biology, and computing to further investigate and 
simulate molecular behaviour, develop new molecules, and develop 
a new theory. 
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Biology is following the other sciences in using the language 
of mathematics. It is not as mathematised because we still have 
to know far more about our commonness and uniqueness. This is 
because biology is the physics and chemistry of living beings (the 
latter two are essentially about the non-living world). Yes, ‘that life 
in living’  is Godly, and who knows if we will get there as humans or 
through AI. The secular trend is loud and clear – biology is getting 
mathematised; it is slow but steady.

Interestingly, the cognitive mathematisation of science started 
with Galileo, who married mathematics and astronomy (physics). 
It would help to know that what we today call science was known as 
natural philosophy in his times  until the early nineteenth century. 
His views on mathematics as the language of science remain the last 
words on it to date. He metaphorically referred to the ways of nature 
as the ‘book of nature’ that can only be read through mathematics. 

To him, mathematics was the language of nature; he saw a 
mathematised nature. He also added that a philosopher has 
to be a mathematician, and in the process, he separated ‘pure 
mathematics’ from mathematics that helped in understanding the 
real, physical world. In the early seventeenth century, he knew that 
the mathematical view of the workings of nature was too complex to 
be readily appreciated by people. This  view also acknowledges that 
mathematics was too idealised in a world where speed and shape 
vary infinitely (astronomer as he was). 

In what may be seen as extended interpretations of Galileo on 
mathematics, he argued that mathematics is the means of simplifying 
the complexity that is nature, of abstracting what is physically 
undefinable. Without mathematics how do we even attempt to paint 
a picture of the universe in ‘words’ (the words of mathematics were 
all geometrical then), the prose of the natural languages being too 
wordy for the purpose. There is only one way of decoding nature’s 
existence, and there is zero margin for ‘play of words’. Galileo’s faith 
in mathematics was metaphysical. To him, we would be much worse 
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off without the mathematical order of the universe; it is for humans 
to decipher that mathematics. In his words ‘nature is inexorable and 
immutable, never violates the terms of the laws imposed upon her.’

He believed that natural languages are best for scriptures because 
they allow for interpretations and contexts to be read by all. On 
the other hand, nature is the same for all, at all times, but it needs 
to be mediated to be ‘read’, which is done by mathematics. The 
conviction and gusto with which Galileo powered a mathematised 
science, a mystique developed around the idea of mathematics that 
transcended domains of knowledge and ignited a general academic 
rethink. In his book Turning Points in the History of Mathematics, 
Hardy Grant elaborates on the specifics – ‘the clarity of ideas, the 
certainty of inference, characteristic of mathematical thinking became 
beacons … gave a model to those who would organise and expound 
their realms.’

Four centuries later, nature, therefore humankind too, must be 
far more mathematisable.

Research – Halo to hello
Newer scientific discoveries are almost all mathematised, and 
descriptive scientific knowledge is rapidly shrinking in proportion. 
Prospective discoveries are anticipated to be more challenging 
for non-mathematizable hypotheses. Conventionally, this implies 
more accurate hypotheses and easier acquisition of all kinds of 
experimental setups, calling for a pat on the backs of a growing 
community of highly successful scientists, and engineers. However, 
on the ground, there is much more than this – data and mathematics 
are reading and generating certain patterns in the work of nature 
and indicating newer scientific laws and regimens. 

Scientific research is on steroids due to (generative) mathematical 
modelling (and  ever-multiplying computing power, by itself a 
mathematical marvel). And there are many faces to this research 
revolution – ‘real world measurements negating the need for 
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experiments and simulations’, ‘continuously learning, generative 
artificial eyes and minds replacing human observations’, 
‘mathematical models that can secure patterns from real (Big) data 
(newer, older and highly diverse)’, ‘more organic collaboration of 
scientists and mathematical modelling’, and ‘degentrification of 
research, away from high costs, best minds, etc.’.  This book is not the 
space to talk eloquently about how scientific research is mutating; 
several tomes around it are already on the shelves. Its relevance to 
the book is how research is getting intensely  mathematised and 
degentrified in that process.  

The recent achievements in complete genome sequencing of 
individuals exemplify how leading-edge research (and innovation) 
flows where mathematical models and computing powers are gorging 
on massive data. A new ultra-rapid genome sequencing solution by 
Stanford Medicine scientists and partners diagnosed rare genetic 
diseases well within ten hours – an unheard of diagnostic feat. Euan 
Ashley, Professor, placed it in perspective –‘this diagnosis (took 
place) in about the time it takes to round out a day at the office’. It 
also reminds us that a few weeks for sequencing a person’s genome 
is what most clinicians call ‘rapid.’

Genome sequencing presents a person’s complete DNA makeup, 
and it is a dream insight into all diseases rooted in our DNA.  It 
means effective diagnosis, faster and more focused treatment, and 
much lower cost for a patient. 

The mathematical genius in this solution is securing what is named 
a Long-read sequence; it reads the entire genome together. In contrast, 
the standard genome-sequencing techniques simplify the computing 
and mathematical threading by slicing the genome and then building 
it again after figuring out the particular DNA Base Pair details of the 
slices. Unsurprisingly, this whole-read method is about 12% higher 
than the average rate for diagnosing hard-to-pin diseases.

The other part of the solution was the fastest possible speed of 
data crunching. Genomic data had overwhelmed the facility’s 
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computational systems; in Euan’s words, ‘we had to completely 
rethink and revamp our data pipelines and storage systems (to 
efficiently crunch massive datasets).’

Here is a hint on the size of the digital equivalent of a single person’s 
genome data. Each of the 3.2 billion DNA base pairs in a human 
genome can be encoded by two bits—800 megabytes for the entire 
genome. But, for the sake of uncompromised accuracy, the sequencing 
is repeated, and the genome data for just one person can grow to be 
a few tens of gigabytes. Processing this much data implies more and 
more time.  To overcome this problem, scientists have suggested that 
a person’s data can be reduced to the differences with respect to a 
reference genome sequence, which is only a few megabytes. 

Data, mathematics, and massive computing power are redefining 
the scientific research method that always started with stating 
testable hypotheses, experimentally testing the same (as a proxy for 
the real world), and succeeding or modifying the hypothesis and the 
experiment to ensure 100% confidence in experimental outcome’s 
interpretations. Now, data replaces experiments, mathematics, the 
hypothesis, and specific mathematical formulations, the confidence 
required for universal acceptance. The catch is that data without a 
(mathematical) model is just useless. Of course, actual experiments 
may be used to prove it beyond all doubt, just as it happened to 
Einstein’s gravity predictions.

To cite another example of how data is being used to create drugs 
that pose prohibitive ethical, cost, time, knowledge, and technology 
barriers, such as finding alternate drugs for multidrug-resistant 
pathogens or ‘smart’ pathogens that host drug resistance outside 
their cellular DNA (the usual target of drug researchers). In fact, 
many times, and increasingly so, we need comprehensively new 
chemicals (molecules) for drugs that ‘surprise attack’ the targeted 
pathogens; physically creating and testing new drugs of this kind 
will be beyond real possibilities. 
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AI is emerging as the panacea for drug development. It is being 
used to train neural networks to test structurally new molecules 
for their interaction with the targeted bacteria or virus without 
physically creating those molecules and the experimental setup.  AI 
platforms can test (screen) over a billion molecules for their impact 
on a given pathogen, as opposed to around a tenth of that volume 
by traditional physical setups. Briefly, AI is a product of ‘data and 
mathematical models’. 

Something fundamentally more is happening due to AI – data is 
now enough to generate and test hypotheses. This is the ‘Big Data’ 
revolution. Fed with massive longitudinal and latitudinal data, ‘AI 
software’ read their patterns, if any, and articulate them in ways it 
is trained for. In essence, it is seeing the ‘whole’ data at a glance, 
repetitively, from multiple designs and perspectives. We do not 
have to look for models to start with (to be true, no  hypotheses) or 
possible correlations to be expected in the real world represented 
by the data. We essentially require the best possible computing 
power and basic statistical tools to start with to see patterns and 
hypotheses those patterns may represent in the context of the data’s 
real correspondence. 

 Chris Anderson, the editor-in-chief of WIRED magazine 2008, 
published a visionary article, ‘The end of theory: the data deluge 
makes the scientific method obsolete.’ He predicted that in the era 
of petabyte data (1 petabyte is 106 gigabytes) and supercomputing, 
experimental pieces of evidence to accept or reject hypotheses 
would be unnecessary and wasteful. He had emphasized that at 
the petabyte scale, information transcends simple three- and four-
dimensional taxonomy and order, evolving into dimensionally 
agnostic statistics.

In the times ahead, the traditional, hypothesis-centred scientific 
method of discovery would be one way to study our world. He 
declared that forgetting taxonomy, ontology, and psychology is 
essential because the crucial aspect is not why people do what they 
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do but the fact that they do it. Tracking and measuring their actions 
with unprecedented fidelity is the key. The ‘track and measure’ he 
referred to is the Big Data – the real-life, extensive, actual record of 
the apparent behaviour of the target object(s) or situation(s).

 Thus, first, we should let mathematics loose on the data and 
then look at making sense of the mathematical peek into the data 
to develop valuable insights, theories, and discoveries. Being able 
to parse through the massive amount of information in  its entirety 
multiple times is an entirely new way to look at the world. He 
emphasised that in the era of petabytes, the numbers speak for 
themselves. The Petabyte Age is different because more is different, 
and AI represents a fundamentally new way of discovering 
science. Just data can throw up a probability distribution of the 
relevance of the most plausible theories explaining over served 
patterns. Prior training in an AI platform may be optional. Even 
simulations are desirable but not required, as AI is developing to 
dig deeper and identify patterns, holes, dimensions, and anomalies 
that humans cannot get to; there is now a ‘third way’ of research 
beyond experiments and simulations. However, collating, combing, 
and concluding Big Data is not just about mathematics and brute 
number crunching power. Eric Schmidt, the former CEO of Google, 
once made an insightful remark regarding the use of AI in science. 
He mentioned that by appropriately managing things with sound 
regulations and providing adequate support for innovative AI 
applications, we can expedite the process of scientific breakthroughs 
that would otherwise take decades to achieve.

The harshest of the evolving truth for the scientific community – 
lots and lots of data (infinite actually) can recreate all the science 
knowledge to date, hypothetically, at the least. Nature’s ways never 
change; science is ‘nature as read and explained’. Yes, the data capture 
of infinite nature is the unsurmountable gap. 

Obviously, a better quantitative sense of the infinite nature will 
settle the idea of (one) Big Data that is powering the new hope and 
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promise; there are infinite ‘Big Data’. The upcoming Square Kilometer 
Array (SKA) Telescope, an intergovernmental project located in 
Australia and South Africa, is to be a source of data collection to 
keep peeking into it to know better some of science’s most complex 
and humankind’s oldest secrets, including potential existence of 
intelligent life elsewhere in the universe. Peter Quinn, the Executive 
Director of the International Centre for Radio Astronomy Research, 
provides an analogy to illustrate the vastness of the Big Data from 
the SKA: this telescope will produce an amount of data in a day 
equivalent to the entire planet's data output in a year. 

Mention must also be made of the significant discoveries that Big 
Data is to make – hypotheses are much closer to real to start with, 
the extensiveness and quality of hypothesis testing is a few orders of 
magnitude more, and the testing itself is near fail-safe. New theories 
leave little out, and incrementalism in research and discovery may 
well be over. 

Is there a spanner in all this? Mathematics! For all of us, and the 
leading scientists and mathematicians. For the lesser mortals like 
us, the mathematical and computational tools used to analyse Big 
Data are mostly opaque in their assumptions/limitations, outcomes, 
and the inherent limitations of mathematical formulations. Not 
difficult to imagine is also the real chances of the ill-use of such 
data-mined research.

All this brings us to the most enabling of all transformations  in 
research; all of us can use Big Data analysis to read sense in the 
already projected patterns and seek further analysis for patterns that 
one can imagine to make sense. The power of diversity, untrained 
expectations and goals, lived and unique experiences, unfettered 
wants and needs, as well as the imagined world we wish to dwell in 
are all sources of ‘good and grand’ research in the times ahead. This 
also includes the liberation of scientists from pre-research grants 
and permissions. There are what Eric Schmidt calls ‘self-driving 
labs’ – AI-powered virtual research labs that people can hire. Last 
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but not least, it portends the rise of AI as research-sovereign, AI 
analytics suggesting and accepting research agendas for the future.

Research is following the master – as the theoretical sciences 
expand, research mathematises.

Innovation – The new socio-economic marathon 
What research is to science, innovation is to technology, and 
there is a data-led radical shift in the process, value-addition, and 
mathematisation of innovation. There is little to elaborate beyond 
the discussion on (Big) data-powered research, except that intensely 
(Big) data-driven organisations will likely be a few times bigger in 
customer service and profitable operations.
We shall now explore some well-known examples of innovations on 
the back of Big Data. Well-known examples of innovations on the 
back of Big Data. 

Google is the world’s most ‘data-denominated’ business, and 
the largest user of Big Data technologies. It showcases all that is 
possible with digital, mathematised, Big Data innovations – high-
performance organisation design and culture, rapid product 
redefinition, evolving revenue models, quality post-sales support, 
and a formidable product pipeline. Yet, all these do not imply that 
Google gets it all right and thriving. There is much more to valuable 
innovations – correctly reading the several ‘Big Data’, faithfully 
translating the same into products/services, positioning it right, and 
keeping up with continuous innovation to beat the competition.

Google’s pioneering work in advertisement-backed business 
model is nothing more than applied mathematics. It bets on 
generating large and varied data on its user’s behaviour, continuously 
developing and tweaking analytical models to mine the user 
data, optimising product features to service a large population at 
manageable costs. To best sustain this organisational DNA, it also 
became ‘employee-centred’ in several path-breaking ways (all of 
that is part of history now).
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Google’s Universal Translator, duly unveiled in 2023, is definitely 
a technology marvel; it can seamlessly live translate video content 
across 300 languages with a lip sync of the live video for each 
translated language outcome. This is real due to Google’s translation 
algorithms (codified mathematical models, such as statistical 
analysis) and Big Data on specific language usages. In 2023, Google 
has 17 years of longitudinal data on actual, nuanced translations of 
sentences by native speakers. The criticality of Big Data is evident 
in how the Translator already works much better for ‘high resource 
language’ such as German, for there is more than enough volume of 
written work in the language to train the AI. 

Pertinently, the unsatisfactory translation performance in low-
resource languages (used strictly in a limited sense of low availability 
of literary and communicative reference text data)  must improve 
with better algorithms. In the final analysis, Big Data has the upper 
hand in the quality and expanse of AI applications. Peter Norvig, a 
distinguished researcher in human-centred AI, may have the last 
word on the place of algorithms (software mathematical models), 
‘essentially all models are wrong, but some are useful.’ And in case 
this sounds unreal, Chris Anderson’s words clarify the importance 
of Norvig’s approach. Why not explore the possibility of having 
computers rapidly learn models from data instead of humans 
painstakingly deriving models through extensive contemplation? 
In the end, all knowledge should be thoroughly logicalisable and 
mathematically modellable. 

However, mathematical modelling of making sense of the Big 
Data embedded in algorithms does help compensate for the lack of 
data, and this ability is also increasing with the better fit of existing 
and newer mathematical models. 

In Google Translate, algorithms are improved through ‘synthetic 
parallel data’, deploying lessons from same-family translations as 
well as multi-lingual translation, better identification of ‘noise’ or 
missing genres in texts used for training AI, better combination of 
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different dialects of languages, and more. The awesome aspect of 
the Translate algorithms is that it ‘thinks language’, it is very highly 
trainable – given comparable Big Data, it would translate Hindi to 
Farsi as confidently as it would translate Arabic to English.      

Amazon, Netflix, Uber, Coca-Cola, McDonald’s, Zomato, 
Starbucks, and MasterCard are just a sample of companies treading 
the same path as Google.

However, it is the Jack Ma founded Ant Group in China that 
mirrors Google’s data-stamped existence; he created a bank 
without any capital investment as a bank. It turned out so massively 
successful that it was listed as the most valuable debut on any stock 
exchange; it was too good to be true and eventually scuttled by the 
government. Its online bank, MYbank, brought credit to small and 
micro businesses, traditionally out of favour with banks. To be true, 
it is just the most successful example of the ‘fintech’. There is a 
global revolution in financial inclusivity, enabled by intelligent 
and automated systems that permeate the entire business 
ecosystem for collecting Big Data – real-time, authenticated, and 
transactional data from financial actions, social media posts and 
interactions, customer and product profiles of businesses, etc. Big 
Data affords a holistic approach to lending personalised economic 
and financial solutions.

In China, small business borrowers would apply for loans 
through their smartphones, just a few clicks at that, and receive cash 
almost instantly if approved (a large majority of the applicants). No 
meeting bankers, volumes of financial records, or referees. It took 
no more than three minutes. And yet, the default rate was under 
1%, and the cost of loan processing was just half USD. The online 
application and risk-management system collated and processed 
over 2,500 dimensions of information on borrowers in those three 
minutes; yes, such intensive and intrusive ‘legal/formal’ access to 
private details of a private business is worthy of attention.
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China’s social credit system is a source of ‘credible’ information 
on the bankability of loan seekers, one of the reasons why 
creditworthiness could be swiftly decoded. Social credit is a kind 
of national ‘trustworthiness’ rating system for individuals and 
corporations. Initiated in 2014, it envisaged a six-year plan to 
build a system to reward actions that build trust in society and 
penalise the opposite. It is also uniquely insightful because social 
credit is built upon two kinds of information – traditional financial 
creditworthiness and ‘social creditworthiness’ (this is based on 
information from a larger swathe of everyday living.) In an article 
for Mint, Jun Lou of Bloomberg reported a case involving ‘social 
credit data’. The article highlighted the potential difficulty a small-
business owner might face in securing a loan due to a drop in their 
social credit score, stemming from something as trivial as failing to 
return a borrowed umbrella.  Digitally collecting such information 
in a public database is just another instance of what makes Big data 
so big in impact.

The bottom line – healthy profits for MYbank. And higher top 
line and bottom line for the borrowing small businesses; millions 
of entrepreneurial dreams turning real. A true positive sum game.
Innovation is the strategy now! Innovation is not just an ideal goal. 
Innovation is the business, not the products or services; the latter 
two are just targets of innovation. 

Big Data is re-architecting innovation in a few crucial ways by 
bringing in a world of unstructured and legacy data (on paper, 
images), 360° data, contextual auto-recommendations, almost 
eliminating the cost of prototyping, co-creating with users, etc. It 
is mass-scaling innovation, reducing collective waste, and fuelling 
wealth democratisation. 

Big Data is now an organisational soft infrastructure, like human 
resource qualities, culture, practices, value systems, and ethical codes. 
It is critical for all kinds of organisations, not just businesses and 
governments. It consists of all recorded and recordable actions of all 
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kinds of ‘persons’ – individuals, families, communities, businesses, 
associations, government institutions, and now machines (mobiles, 
computers, IOT, autonomous objects, robots, bots). It also must 
include new knowledge created by Big Data itself! 

Everyone is a (net) producer – An existential imperative
Research and innovation serve as the cornerstone for a better 
tomorrow. The de-gentrification of research and the ‘business 
of innovation’ rely on all of us to play our part in creating a truly 
sensible and sustainable future together. The more individuals 
involved in the realms of research and innovation, the better for 
everyone. Fourth Industrial Revolution (4IR) technologies have 
not only united the world into a virtual village but have also 
democratised access to the best socio-economic soft-infrastructure, 
including education, health, and ‘ease of business’. Humanity has 
never before extended such a welcoming hand to all. This marks the 
most notable difference between 3IR and 4IR – the top-down versus 
bottom-up nature of the two.

Most notably, 4IR ‘softens and virtualises’ the value creation 
and production fabric. Economic resources and opportunities 
seamlessly expand, capitalizing on and cultivating individual 
productive instincts and cultural propensities. Strikingly, the DNA 
of 4IR is as biological as it can be – it is a double-helix economic 
miracle that combines two distinct models: the proto-industrial 
system (involving large-scale production but without the 'factory 
model,' powered by independent 'Own Account Enterprises’) and 
the intelligent-industrial system (a post-factory model with globally 
networked 'Own Account Enterprises)." 

Undoubtedly, the unfolding of the Fourth Industrial Revolution 
(4IR) may still be far off, but it awaits the effective reinvigoration 
of 'Own Account Enterprises'—where every adult serves as a 
producer,  contributing economic value. No one is left behind and 
designated solely as a consumer; rather, every adult becomes an 
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economic sovereign. Ensuring economic surplus for every adult 
is the wellspring of dignified living, for even the poorest of poor 
assumes multiple social roles—spouse, parent, child, sibling, 
neighbor, and citizen—all social constructs requiring some level 
of financial means to fulfill these social identities.

Indeed, guaranteeing human dignity stands as the most 
revolutionary promise within the realm of possibilities offered by 
the 4IR. The vision of a world with 8 billion dignified humans is 
beyond our current imagination. It encompasses the broad socio-
economic integration of all humanity, bridging divides between 
rich and poor, rural and urban, men and women, developed and 
developing nations, and other economic faults. To the extent that 
the 4IR represents a highly quantifiable transformation, achieving 
dignity, for one and all, can be mathematically structured. 

4IR technologies possess the potential to address the needs of 
the ever-growing global population of 8 billion. They can transform 
this burgeoning populace into a virtuous cycle of socio-economic 
advancement for all, wherein every individual's life contributes to a 
better collective future. We are witnessing the most fertile substrate 
for ensuring dignity for all.

The concept of dignity is inherent, yet its universal recognition 
has been a relatively recent, notably enshrined in the 1948 United 
Nations Universal Declaration of Human Rights. However, in 
current times, the concept of human dignity is under severe 
scrutiny, being challenged and violated. Reports of abuse, violence, 
discrimination, humanitarian crises, and authoritarianism are 
common across nations. Nevertheless, human dignity encompasses 
far more than the absence of these adverse conditions. We are 
gradually understanding how deeply it is rooted in the economic 
empowerment of individuals. We must rectify this situation 
or risk living in the indignity of a subhuman existence. Worse, 
our acceptance of indignity for the majority might become an 
irreversible and unredeemable condition.   
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It is important to remind ourselves that governments, 
unfortunately the only functioning human collective, cannot solely 
sustain the dignity of the middle class, let alone provide adequate 
support for those living in poverty and deprivation. Developed 
nations already struggle with unbridgeable fiscal deficits, causing 
their per capita social investments to dwindle. Many developing 
nations have already reached fiscal collapse. It is noteworthy that, as 
we write this, the Australian state of Victoria, recognized for its social 
liberalism, has announced the withdrawal of its bid to host the 2026 
Commonwealth Games, citing insufficient financial resources". 

Humanity must conspire to leverage technology as never 
before. Let us collectively hope for the emergence of Human 
Businesses – next-generation enterprises dedicated exclusively 
and profitably to serving the common market of 8 billion people 
(similar to the European Union common market). These businesses 
would focus solely on producing products equally valuable to all 
8 billion individuals, eliminating the existence of 'bottom-of-the-
pyramid' products. Considering this prospect, among the first such 
products could be a same quality mathematics education, ensuring 
uniform high-quality K-12 mathematical outcomes for every child 
and working-age adult.

Individual dignity cannot exist without economic dignity. 
Universal dignity requires mathematising humankind. 

A twist to the tale – We all use deduction, all the time
Signs indicate that mathematical and logical thinking is inherent to 
humans as a priori knowledge – no specific learning or training is 
necessary to deploy it in everyday situations. Academic application, 
however, might require formal education. This innate ability 
naturally grows as we go about our daily routines. We are already 
somewhat mathematised, awaiting further honing and expansion 
through formalisation. The challenge lies in our dependence on the 
formal education system – curricula, textbooks, assessments, and 
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teachers – which does not systematically introduce the thought 
process of deduction (and how it contrasts with induction, the 
scientific thought process).  

At a rudimentary level, evidence suggests that we share a 
sense of quantity with certain animals. Most animals exhibit an 
understanding of their physical capabilities, for example,  they 
displaying a sense of assessment of the length they can jump over 
with ease and do not attempt jumping over a wider drain. Similarly, 
research indicates that some animals, like crows, can differentiate 
among 1, 2, 3, and 4 quantities of something.   

Deductive reasoning is an authentic, powerful mode of thinking 
about conditions and situations, consistently applied in our daily 
lives. For instance, based on the boss's past behavior of consistent 
lateness to meetings, I deduce that today's meeting would not be an 
exception. Hence, I might arrive late without consequence. 

Observing that most questions in recent exams were from six 
out of ten chapters in the syllabus, I decide to focus solely on those 
chapters for my preparation.

Noticing a decline in orders for a particular product over four 
months, I conclude that the company needs to invest in new 
products. Recognizing data sciences as the fastest-growing career, I 
plan to transition to become a data scientist. 

However, deductive reasoning is not always correct due 
to flawed premises and overgeneralisation. For example, Ill-
informed premises can lead to incorrect deductions. For 
instance, assuming that all green-leaved plants need sunlight, 
and therefore a red-leaved plant does not, (and it could be kept 
wholly indoors). This  overlooks the fact that need for sunlight 
is not solely due to colour of leaf, but due to the presence of 
the green coloured pigment chlorophyll in such leaves. The red 
leaves also have green pigment chlorophyll but that is masked by 
overwhelming presence of  red pigments in those leaves. 
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Misguided assumptions also affect decisions. For example, 
we are familiar with the fact that objects in an open space 
gradually cool down to reach the ambient temperature due to 
the dissipation of heat from the warmer objects. It is commonly 
believed that to maintain the warmth of a liquid for an extended 
period in a room, we need to heat it to its boiling point and then 
cover it. This is a typical practice to sustain warmth in an open 
setting. However, this approach is flawed. The speed at which 
heat is lost to the surroundings depends on the temperature 
difference between the liquid and the surrounding environment. 
The greater this difference, the faster the liquid cools to align 
with the ambient temperature. Moreover, the rate of cooling is 
significantly accelerated when this temperature gap is higher. It is 
essential to understand that all objects radiate heat in proportion 
to the fourth power of their temperature. 

Overgeneralisation can oversimplify complex situations 
and can lead to inaccurate conclusions. Overgeneralised idea 
that rural folks are inherently 'simpler' and 'sorted', hence, 
Aman, a recent migrant to a city, must also possess the same 
attributes of being 'sorted'. Assuming that because ABC is 
deemed the cleanest and greenest city in the country according 
to a recent survey, my friends residing in a colony in this city 
must automatically be experiencing a high quality of life.  

Deductive reasoning is akin to solving a puzzle. Like puzzles, 
it requires a trained and informed mindset to solve. The process 
involves collecting all information about how to solve  puzzles and 
applying it to the specific puzzle at hand. This similarity between 
deduction and puzzles makes deductive reasoning a personal skill. 
Notably, detective work heavily relies on deductive reasoning.

Generally, deduction involves recognizing and applying a set 
of broader truths, assumptions, or principles to specific situations 
in order to arrive at the most favorable decisions or actions 
guided by this comprehensive framework. The effectiveness and 
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success rate of detectives heavily depend on the thoroughness and 
comprehensiveness with which they gather all types of information 
and evidence, without prejudice to the perceived value of the 
information. Subsequently, they apply deductive reasoning to the 
facts and evidence to narrow down to the specifics of the case.  

It is interesting that many of us exhibit a strong and predominantly 
accurate intuitive and commonsensical approach when responding 
to emergent situations. The utilization of a subconscious logical, 
deductive reasoning process is undeniable in such scenarios. This is 
why deductive reasoning is a form of thinking prowess that cannot 
be easily artificially created and routinised. 

To better comprehend deduction, it is essential to juxtapose it 
with induction. In short, induction, often referred to as the scientific 
method, is the process by which research proceeds to discover new 
scientific knowledge. Hypotheses validated by adequately repeated 
'specific experiments' are utilized as general principles (laws) of 
science. In a sense, induction follows a bottom-up approach, while 
deduction follows a top-down approach to accumulating knowledge. 

However, it is through deductive reasoning, often termed the 
'mathematical route,' that many scientific mysteries are uncovered. 
For instance, the expansive quantum field theory, purportedly 
regarded as one of the most comprehensive physical theories of 
all time, might await the development of the precise mathematics 
needed to unlock its secrets. Robbert Dijkgraaf, a mathematical 
physicist and the minister of education, culture, and science of 
the Netherlands (appointed in 2022), strongly advocates for the 
omnipotence of mathematics in understanding nature. He asserts 
that the workings of the universe follow an ordered and uniform 
mathematical structure, taking a bolder stance by suggesting that 
a proper mathematical comprehension of quantum field theory 
could potentially provide solutions to numerous unresolved 
physics problems.   
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In summary, mathematical reasoning—deduction—is a common 
practice among all of us. It is a matter of formally acknowledging, 
encouraging, and refining what's already a part of our lives. 
Humankind is already at a certain level of mathematisation, and 
mathematised mathematics autonomously raises that bar. 

Another twist to the tale – Mathematisation of ‘social sciences’ 
The conversation up to this point must not imply that the ongoing 
trend of increasing mathematization is confined solely to science 
and technology. Despite living in highly science and technology-
driven times, our future is equally enriched by the mathematization 
of socio-cultural aspects of life and work. To this extent, STEM-
focused research, innovation, and businesses position themselves 
as self-appointed guardians of humanity's well-being, yet many 
recognize it as a mere facade.

The increased mathematisation of social sciences research is 
not a new phenomenon. The utilization of mathematics by what 
we term 'social media' is widely known. It is notably sophisticated 
and continuously refined and restructured. For instance, platforms 
like Facebook employ Big Data and algorithms to dynamically 
tailor the display of pages and content to individual users. Each 
action of the user—clicks, likes, shares, friending, comments, and 
tags—contribute to and refine the Big Data related to the social 
behaviour of individuals, diverse communities, businesses (via 
their pages), and various other dimensions. These platforms utilize 
intricate, constantly evolving algorithmic tools, such as Affinity 
score, EdgeRank, Time decay, and Edge Weight.

Socio-cultural structures are incredibly diverse across societies, 
making it impossible to categorize and encompass any specific set 
of guiding principles for the mathematisation of social innovations. 
Comparisons can hardly be made between the pace and complexities 
of economic innovations. However, within the sphere of socio-
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cultural life, there exists a unique potential for a tectonic shift in the 
quality of our lives—mathematising humankind for true democracy. 

Political philosophy, institutions, processes, and practices hold 
significant implications for societies. The mathematisation of 
governance institutions, predominantly in certain segments of 
the executive, often referred to as e-governance, was anticipated 
to drive us towards a more robust democracy. However, evidence 
from various parts of the world indicates a burgeoning executive 
that stifles the voices of citizens and opposition, conducts intrusive 
surveillance on numerous fronts, and fails to uphold airtight privacy 
provisions for citizens, community organizations, and businesses. 

Mathematisation is sine qua non for true democracy, yet it would 
never be sufficient for a nation if e-governance were the singular 
focus of the mathematisation of the political society. The most 
groundbreaking consequence of mathematising humankind lies 
in the democratic revolution within each country. Furthermore, 
mathematisation should guide us in establishing resilient, true 
democracies, a first-time opportunity for humanity. At the core of 
the unprecedented 'poly crisis' facing us lies the political and moral 
crisis—the failure of democracy.

Nurturing and sustaining true democracy involves numerous 
dimensions. Considerations include what constitutes true 
democracy (as opposed to our current state), why we might seek 
it (its potential advantages), and the feasibility of its realization in 
current times (whether such a political revolution is attainable). In 
this context, the mathematisation of democracy stands as our sole 
hope to position society and citizens at the helm and in control of 
governance institutions, policies, and laws. 

Yes, e-democracy presents a distinct form of political 
organization within societies when compared to e-governance or 
e-governments. The latter, in its current form, restricts democracy 
by implementing unparalleled, comprehensive, and intrusive 
surveillance of citizens and societies in real-time. There exists 
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an unhealthy and menacing imbalance in the information and 
information flow between citizens and government institutions 
and political parties. To establish the technological foundation of 
true democracy, the essential component is the mathematisation 
or logicalisation of core democratic processes. E-government will 
play a role, albeit in a manner that serves democratic objectives. 
Mathematisation of socio-cultural aspects of life is set to deepen.

Linear Algebra – The easiest mathematics is firing Big Data
Luck also favors mathematics, the most benign face of mathematics 
is occupying the centerstage of its applications.  Linear algebra 
constitutes the fundamental framework in mathematical modeling 
for the development of AI applications. As its name implies, it 
operates within the realm of linear mathematics. Consequently, 
all equations studied in this field are linear, with variables used in 
their 'native forms'—specifically, to the power of 1. For instance, 
the equation  

a1x1 + a2x2 + ... + anxn = b represents a linear equation where a1, 
a2, ..., an and b are constants, and x1, x2, ..., xn are variables raised to 
the power of 1.

It is algebraic, dealing with varying quantities and their 
interrelationships. For instance, the equation 5x + 2y = 7 represents 
a linear connection between the variables x and y. It signifies that if 
x and y change in a specific manner, their values must adhere to this 
relationship to qualify as a solution to the equation. In this instance, 
the equation delineates a line in the x-y plane, with x and y as the 
two variables.

It involves finding what these quantities may amount to under 
given exact quantities of these variables; For example, consider the 
following system of linear equations:

2x + 3y = 8 
4x – y = 7
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We can apply linear algebra techniques, like elimination or 
substitution, to determine the values of x and y that meet these 
conditions. In this scenario, we can solve for y in terms of x using 
the second equation and subsequently substitute that expression 
into the first equation. 

In fact, any situation involving more than one simple variable 
requires the use of linear algebra to mathematically articulate and 
utilize it as a generalized model. Proficiency in understanding 
and employing linear algebra tools forms the basis for effectively 
utilizing 'big data' to creatively tackle a wide array of scientific, 
technological, social, economic, and even political/governance 
objectives and challenges. 

Linear algebra empowers us to envision, interact with, and 
manipulate n-dimensional scenarios—be it scientific, technological, 
social, and more—where each dimension represents different 
variables that collectively define these scenarios. This is an intriguing 
facet of mathematics in general, and specifically, of linear algebra. 
Most of us find it challenging to comprehend anything beyond 
3-dimensional space or objects. However, some, primarily physicists, 
have approached visualizing a 4-dimensional combination of time 
and space. Yet, it's not far-fetched to imagine scenarios in n-space, 
depicted as ordered data involving a list of n variables.   

In our pursuit to comprehensively understand and model 
increasing volumes of data, we frequently augment the number of 
variables during data collection. Greater intelligence necessitates the 
inclusion of more variables. Consequently, linear algebra is growing 
in potency and usefulness for constructing progressively intelligent 
devices and systems. 

Linear algebra serves as a fundamental analytical tool for various 
systems experiencing an increase in embedded intelligence—such 
as in engineering (for example, analyzing the dynamics of flow 
in a network of pipes), economics (for example, understanding 
price, supply, and demand dynamics), science (for example,  in 
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weather forecasting), and consumer products (for example, in 
sound speakers).

Linear algebra allows us to easily comprehend and manipulate 
systems of equations featuring a large number of dimensions/
variables, enabling us to solve them for practical and 
implementable solutions.

Linear algebra and its applications  
Linear equations are notably effective in approximating real-
world situations. One intriguing scenario involves quantities that 
require multiple dimensions or variables for complete definition 
or understanding. The simplest among these are quantities known 
as vectors—they possess one dimension as magnitude, akin to 
scalar quantities, while the other dimension denotes their direction 
of change. For instance, speed is a quantity defined by a single 
dimension known as magnitude. However, when considering speed 
along with another dimension—direction—it becomes velocity. 
Thus, velocity represents a vector quantity with two dimensions: 
magnitude and direction.

In linear algebra, vectors hold a fundamental position, playing a 
central role in various key concepts and techniques. Using vectors 
in linear algebra offers a significant advantage—they provide 
a robust and adaptable method to represent and manipulate 
complex quantities. Vectors can undergo addition, subtraction, 
scaling, and various transformations, which can be combined to 
create more sophisticated operations and structures. Consider an 
airplane landing, a scenario influenced by several vectors: wind, 
drag, wing and tail positions, along with Air Traffic Control (ATC) 
instructions guiding pilots on a specific heading (direction) for a 
set distance (magnitude).

A matrix, much like a vector, comprises a collection of numbers, 
while linear transformations encompass the set of all functions 
(functions that take vectors as inputs).
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In linear algebra, matrices serve to represent linear transformations 
and are expressed through matrix multiplication. For instance, the 
rotation of a 2D image on a computer screen exemplifies a linear 
transformation, which can be represented by matrix multiplication.

Linear algebra holds significant connections to various areas of 
mathematics, notably including probability, calculus, and statistics, 
because it provides an efficient means to represent and manipulate 
data. Its role in statistics and probability theory is particularly crucial.

In statistics, data is frequently organized in matrices or vectors, 
where each row signifies an observation or data point, and each 
column denotes a variable or feature. Operations in linear algebra, 
such as matrix multiplication, are instrumental in conducting 
computations on these data structures.

In probability, regression analysis is a statistical technique used 
to model the relationships between variables. Linear regression 
assumes a linear relationship between the dependent variable and 
one or more independent variables. The coefficients in a linear 
regression model can be estimated using techniques such as 
ordinary least squares (OLS), which involves solving a system of 
linear equations—a core concept within linear algebra.

In calculus, linear algebra is used to study the functions of multiple 
variables and their derivatives; linear algebra facilitates the solution 
of linear systems of differential equations.  

Linear algebra can also be used to study optimization problems, 
which involve finding the maximum or minimum value of a 
function subject to certain constraints.

It may be encouraging to realize that linear algebra is part of 
school-level mathematics. There is no reason for anyone to struggle 
with mastering linear algebra, except due to the quality of school-
level mathematics education and a lack of rigour in the faith and 
belief of the educators in ensuring all students succeed.

In contrast, the application of mathematics in physics 
demonstrates a relatively stronger command over mathematical 
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principles. While calculus computations might not be suitable for 
everyone, Linear Algebra, in comparison, is accessible to all—it's 
simpler. Even theoretical physicists tend to favor more familiar 
and 'simpler' mathematics. For instance, consider the Heisenberg 
uncertainty principle and the Schrödinger wave equation, both 
independent theories in atomic physics. They share a similarity in 
asserting that a more precise determination of an atomic particle's 
position would compromise the certainty of its momentum. 
Essentially, their mathematical formulations are alike. However, 
Schrödinger's equation gained more popularity as it relied on more 
familiar differential equations.

On the whole, the central position of simpler mathematics would 
spur the faster and wider mathematisation of humankind.

Mathematising mathematics – The pearly gates of education 
This extensive topic is reserved for a later chapter in the book. The 
'technology of education' stands as humanity's blind spot, revealing 
our struggle to comprehend the means to nurture an infant toward 
reaching even 'half of their human potential.' Unfortunately, it 
seems to reflect a race to the bottom, as exemplified when a U.S. 
president famously urged teachers to compete against Indian 
children in mathematics, despite the puzzling dilution observed in 
mathematics education in India. 

We have misconceived education to the extent that Edtech is 
now hailed as 'Technology in education;' expanding technology's 
presence in a domain that is fundamentally social. Education relies 
on role model adults, peer interactions, conversations, observations, 
experiences, and the development of habits of both body and mind, 
such as reading and writing.

Furthermore, the intensifying institutionalisation of 'educating 
children' might be humanity's most significant misstep in the past 
200 years. The advent of the Fourth Industrial Revolution (4IR) will 
inadvertently lead to the de-formalisation of education, returning 



Mathematising Mathematics    39

it to the domain of parental guidance, family influence, and the 
broader societal community 'the village'. 

The growing public apprehension towards AI, urging for 
regulation to 'combat it,' actually signifies our collective failure 
to grasp the core of education. It is high time we equip people to 
align with AI, prompting a redesign and revolution in education. 
To cut through the complex context, the educational revolution 
hinges on the lack of a just any one domain of knowledge, skill, 
value, or attitude that every school can effectively instill in all its 
children, without exception. Currently, we are attempting numerous 
initiatives, all falling significantly short of the mark!

There exists only one such domain – mathematics! Unfortunately, 
K-12 education shows the poorest possible record of achievement 
in mathematics. K-12 has yet to de-arithmetise mathematics, and 
view  it as the language of the gods and the universe, the language 
intertwined with everyday life. The philosophical foundation 
supporting mathematics as a natural-like language dates back several 
centuries. David Sepkoski, from the University of Illinois at Urbana-
Champaign, in his research on seventeenth-century mathematical 
philosophy, suggests that 'the epistemology of mathematisation is 
fundamentally linked to the epistemology of language.' Epistemology 
refers to the 'philosophical theory of human knowledge.' For instance, 
the previously mentioned 'epistemology of language' could be 
interpreted as how we acquire and master a language. 

Mathematising mathematics is non-abstracting mathematics. 
K-12 reassertion will start with mathematised mathematics.

Without further ado, let us just say that humankind is 
mathematising as K-12 remakes itself.

Regulating AI – A lame debate without ‘making men’ 
Regulating the AI industry is an ongoing, contentious battle. 
Surprisingly, some industry leaders advocate for seeking regulation 
while simultaneously advancing their vision for AI platforms and 
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products. It is premature to firmly adopt a position on regulation or 
delve deeper into its evaluation at this stage. 

The crucial and fundamental issue concerning the progression 
or containment of AI is the current and future nature and level 
of organic intelligence. The interaction and relationship between 
humans and AI depend on the master's capability and how we strive 
to surpass and maintain superiority over AI—continuously growing 
to maintain our mastery. Human capabilities are boundless, and 
our only limits lie in how we educate ourselves, determining our 
individual and collective virtues and potential. 

There is little debate when it comes to advancing the 
mathematisation of humankind, regardless of how or when 
we regulate the AI industry. Mathematisation also involves 
rejuvenating society by empowering its basic units—individuals 
and families. Society represents the unseen force and structure in 
our lives. It revolves around instilling the concept and guarantee 
of social welfare, allowing genuine democratic control over our 
shared destiny. 

We must realise that debate on AI regulation lacks foundation, 
and is without considering how humanity will progress in the 
future. In fact, AI itself plays a crucial role in facilitating the ability 
of humankind to retain best control over AI. 

Furthermore, without striving to ensure the mathematisation 
of the entire human race, the debate about regulation falls into the 
hands of a fraction of us who may have a better understanding of AI 
but cannot genuinely represent the best interests of all of us, or the 
potential collective advancements in the realm of AI. 

It all comes down to 'what it means to be human', 'what defines 
our humanity', and how mathematics serves as the fundamental 
stepping stone to understanding 'what makes us human'. As a 
corollary, it raises questions about 'the essence of education', 'the 
connection between the education system and our humanity', and 
'the role of mathematics in education'. 
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Annexure

Mathematisation Case Studies 

Trigonometry and Calculus

Seeing is believing. Experiencing is truth. Let us experience 
‘mathematised Trigonometry and Calculus’.

Pertinently, among the more unique and important features 
of mathematics as a language and a domain of knowledge is that 
it has come to be so abstracted, regourised, and procedured for 
the sake of widest applicability that it is too expansive even for 
mathematicians. We, the authors, are not mathematicians, and 
despite that handicap we assert that of all kinds of researchers 
mathematicians follow the most specific interests (of course, 
that also implies that their contributions are most impactful for 
humanity.) Education of mathematics needs to be revolutionized.

The abstractness of trigonometry is widely acknowledged. John 
G Kemeny, a remarkable mathematician and computer scientist, 
questioned the relevance, stating that a considerable portion of his 
high school trigonometry course was dedicated to the solution of 
oblique triangles. However, he expressed that throughout his highly 
varied career, he never found an excuse to use these techniques 
and questioned the necessity for all high school students to devote 
several weeks to the subject.

On the other hand, calculus education misses out the beauty 
and the beast that it is. In the words of the mathematician Steven 
Strogatz, calculus insists on a world without accidents, where one 
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thing leads logically to another. With the initial conditions and the 
law of motion, calculus allows us to predict the future or, better 
yet, reconstruct the past.

Mathematisation of thinking
Mathematisation of thinking is building natural-language-like 
competence in expressing real or imagined relationships of 
quantities. It would help to know that this mathematisation is best 
raised on high proficiency in the chosen language of academics. For, 
language mediates thinking, and a brain that is already accomplished 
in using abstract objects and constructs – words, syntax, grammar, 
semantics, morphology – is far better equipped to master another 
language. Mathematisation of thinking is to harness mathematics as 
a language to comprehensively and uniquely visualise and express 
situations involving quantities.

Interestingly, the benefits of mathematics as a language are 
well appreciated. But it quite ends there; it is not practised, not 
even among mathematicians. The reason for this divorced state 
of possibility and practice is very illuminating. Natural languages 
are so-called because learning them is simply by participation; just 
being all ears requires registering literal correspondence between the 
words and the objects/feelings they represent. The formal constructs 
of our first natural language – the mother tongue – are for literary 
writing capabilities, not for accomplished communicative writing 
or reading literature in that language.

However, a layer of formal learning is required for ‘non-natural 
languages’, or acquired languages, such as mathematics, art, music, 
dance, ‘theatrics’, games and sports. All these languages are somewhat 
innate, a kind of sense/knowledge, and thus, too personal, and need 
to be framed into a common framework for communication with 
others. For instance, music is so highly structured/framed that it 
is almost universal; good music is pure science (and mathematics). 
Music is all sounds that are pleasant to our brain; all else is noise; 
that is why music is quite universal.
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Mathematics must also be structured to be effective as a means 
of communication. We already know how mathematics has the 
simplest demands and complexities as a language. There is little by 
way of convention in mathematics (for example, the way we write 
numbers draws Cartesian planes), and even the list of standard 
notations is not much. What is the twist in the story of mathematics 
that makes it a 100% precise language (every physical reality has 
only one mathematical expression) and 100% universal? The simple 
answer is what we call concepts and the rigid network and hierarchy 
of concepts. Learning and mastering these concepts needs formal 
education and their application in the routine.

Thus, the mathematisation of thinking boils down to intensively 
exploring the conceptual foundation of the various dimensions 
of mathematics. This implies a significantly toned-down role and 
place of ‘rigorous, calibrated mathematics’ in mathematics as a 
language. To be convincing, we have chosen two dimensions 
of mathematics – (secondary level) Trigonometry and (senior 
secondary level) Calculus – as case studies of conceptual 
exploration of mathematics.

We hope that a good read of the two case studies would see you 
falling in love with triangles and Calculus and imbue you with 
newfound lenses to critically and creatively quantify disparate 
everyday and professional contexts, thereby setting off a new 
relationship with mathematics and the world because the two are 
also the most challenging of mathematics in K-12. The contrast with 
the extreme abstractness of school mathematics should be apparent, 
and the place of ‘process and proof-driven’ scholastic mathematics 
may be respectfully questioned and revisited. We expect that the real 
nature of mathematics will be revealed and mathematics education 
will become the fountainhead of AI-age thinking humans.
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An introduction to 
‘Mathematised Trigonometry’

Trigonometry is placed on the cusp of secondary and higher 
secondary education and is literally the high point of secondary 
geometry, algebra, sets, and functions. It is also the best closure to 
the enigma that is triangles, in terms of the lion’s share of geometry 
curricula up to secondary years. Yet, trigonometry education cannot 
be more recklessly designed and delivered. 

Trigonometry is best introduced and internalised as a function, 
a special relationship between the angles and sides of triangles. 
Understanding trigonometry as a set of functions that dramatically 
simplifies visualisation and verbalisation of the three ‘primary 
trigonometric functions’ – sin(e), cos(ine), and tan(gent) – and 
their multiplicative inverses – sec(ant), cosec(ant), and cot(angent). 

Even better, senior secondary’s nemesis – the inverse trigonometric 
function(s), especially when coupled with calculus – is a delight to 
be introduced as a function. 

To be fair, relations and functions are often out of the 
secondary syllabi, and using these to explore trigonometry 
would not be possible without curricular reorganisation. But that 
reorganisation is anyway an imperative for another reason too – 
knowledge of sets is integral to counting, and quantification. Sets 
must be introduced in the pre-school years and better explored 
in the primary school years.

By the middle school years, interactions among sets could 
easily be studied at the basic level. Relations and functions are the 
operations through which sets interact. Relations and functions are 
the gateway to many mathematical foundations.

Besides, functions play a pivotal role in calculus. The latter would 
not be possible without the use of functions.   
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Mathematised Trigonometry

Triangles, the simplest polygon we come across in everyday life and 
geometry have a wide variety of shapes and properties depending 
on the measure of the angles and the length of the sides. It would be 
hard to think of a ‘standard’ or more common kind of triangle, that 
is, a more common shape of triangles.                 

Triangles of different shapes

On the other hand, when it comes to the other polygons (with four 
or more sides), some shapes are so very common that they can 
be considered ‘standard’ or ‘typical’ polygon shapes. For example, 
parallelograms, squares, rectangles, rhombuses, and kites are the 
most visible four-sided polygons (quadrilaterals). Other kinds 
of quadrilaterals cannot be bracketed into having a standard or 
typical shape.

Square Rectangle Rhombus Trapezoid Kite
Some standard quadrilaterals
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Uncommon quadrilaterals

The standard quadrilateral does not exhibit many variations, for 
example, squares and rectangles vary only with respect to the length 
of the sides. Thus, their shape changes to become bigger or smaller. 
Similarly, depending upon the length of the radius, a circle changes 
to become bigger or smaller only. 

Size of standard quadrilaterals and circles differ in length, not in shape

The same is true for other kinds of polygons, such as pentagons, 
octagons, decagons, etc. In polygons, the standard form has sides 
with equal length. Such polygons are called regular polygons. 
There is no difference in the shape of the different versions of these 
standard (regular in geometry) polygons with the same number of 
sides. All pentagons, hexagons, and decagons, for example, are just 
bigger or smaller sizes of the same shape.

Size of standard polygons differ in length, not in shape

Triangles are unique polygons. They have innumerable variations. 
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Welcome to the diversity and the beauty that is triangle
The fact that triangles are polygons with the least number of sides 
and come in very different shapes is a boon in geometrical analysis. 
All kinds of polygons (four sides or more – whether regular or 
irregular) are geometrically studied by visualising and decomposing 
them into multiple interconnected triangles– their fundamental 
building blocks.  

This also reinforces why we must study triangles in all their 
diversity, and they better not be reduced to any common forms for 
their geometrical understanding. 

Polygons are made up of multiple triangles

The root of trigonometry
Expectedly, there is a branch of mathematics that is dedicated to 
the study of triangles. It focuses on how the measure of angles and 
length of sides help compose infinitely unique triangles. To that 
end, it studies the relationships between the length of sides and the 
measure of angles of triangles.

The saving grace
Thankfully, despite the apparent diversity in the shapes of triangles, 
their properties reveal a remarkable simplicity when it comes to 
discovering patterns in the relationships between angle measures 
and side lengths. 

In triangles, a significant and indisputable relationship exists 
between the measures of angles and the lengths of the sides opposite 
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to them. This fundamental connection acts as a saviour when 
tackling geometric challenges. 	

Biggest angle

Largest side80°A

B

C Biggest
angle

Largest  
side

100°

A
B

C

Biggest
angle

Largest  
side

75°
A

B

C

55°

45°

40° 40°
40°

65°

Angle opposite to the largest side in a triangle is always biggest and vice-versa

And even this relationship is specific – a given angle measure will 
not have a fixed length of side, it is limited to the fact that any 
increase in an angle measure will lead to an increase in the length of 
the opposite side (whatever it is). 

As the measure of ∠A increases, so does the increase in the 
measure of the length BC which lies opposite to ∠A. 

A

B

120°

C

A

B

30°

C

A 40°

B

C

With the increase in the measure of the angle, length of its opposite side 
increases

There is another face of the angle and opposite side relationship – for 
the same angle, the opposite side could increase or decrease in length! 
Does it violate the nature of the aforementioned relationship? No. In 
fact, the finer, universal aspect of the angle and side relationship is 
in the form of angles and ratio of sides, rather than an angle and just 
a side. The other two sides of a triangle also change if the opposite 
side to an angle is changed. Thus, we would henceforth relate angles 
to sides. It must be emphasised that this is highly intuitive, practical, 
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and visual correlation of angles and sides, it is not formal, but this is 
logically rooted and as ‘mathematical’ as necessary. 

A

B

C

A

B

C

A

B

C

Same measure angle with different lengths of the opposite side has different 
lengths of the other sides 

Indeed, in triangles the three sides and the three angles need to be 
studied extensively to understand its different facets. 

Welcome to trigonometry, the domain of mathematics that helps 
us to measure all the six measurable dimensions of triangles – the 
three angles and the three sides.

A note on learning about Trigonometry
The documented roots of trigonometry can be traced back nearly 
2500 years ago, and it likely has an even longer history that dates 
back further. Trigonometry emerged from astronomy in ancient 
civilizations as a practical tool for studying celestial objects. 

The geometry of celestial objects is 3-dimensional, not planar 
(2-dimensional, or what is called Euclidean geometry), and thus, 
the corresponding trigonometry is spherically oriented, not 
planar trigonometry. 

At the best of K-12 geometry, spherical geometry (such as the 
shortest distance between two points on the surface of the earth such 
as the ‘straight flight path’ of migratory birds is not straight, it is an arc 
on the spherical surface of the earth.) is not part of curricula. And it 
need not be, planar geometry itself is a huge part of our lives, science 
and engineering too.

To the point, the foundational concepts in K-12 Trigonometry 
are made unduly complex by using spherical geometry for just 
studying planar trigonometry. For example, trigonometry was 
founded with ‘trigonometric functions’ in terms of arcs/chords of 
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circles, but it does not mean K-12 education has to use the same 
foundations. As we will experience soon, functions (which are 
central to mathematics in all that is the real world) are a much better 
way to understand trigonometry.

Thus, we will explore the foundations of trigonometry from an 
easily visualisable and logically threaded narrative using functions.

The K-12 trigonometry also makes one more simplification – 
we study trigonometry for right-angled triangles only; this makes 
learning about sides and angles easier because the possible variations 
in the shape of triangles are dramatically simplified (still infinite in 
numbers). The following pictures show how there are only two kinds 
of shape variations in a right-angled triangle.

A B

C

A B

C

A B

C

Hypotenuse increases with the increase in height of a right triangle with same 
base length

A B

C

A B

C

A B

C

Hypotenuse increases with the increase in base length of a right triangle with 
same height

Remarkably, this simplification is similar to how regular polygons 
and circles are simpler shapes. 
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And the best news – there is no compromise in applying 
trigonometry as all triangles can be seen as composed of two right-
angled triangles.

C

B

D

I

II

A

C

B

D

I

II

A

C

BD

I II

A

Every triangle consists of two right-triangles

Trigonometry
There is a very interesting fact about all the angles and all the sides of 
a triangle. 

We cannot find the sides of the triangles even if we know all the 
angles – the same-angled triangles can have any-sized sides.

C

BA

C

BA

C

BA

Triangles with equal angles but varying sizes

But the other side of the question is doable – we can find the angles 
of a triangle whose three sides are known. For example, if three lines 
of any length are given, then we can make a definite right-angled 
triangle with these three lines.
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A B

C

Right-angled triangle can be created using three lines of any length

Despite the fact mentioned above, the three possible scenarios with 
respect to triangles are - finding the sides when all the angles are 
known, finding the angles when all the sides are known, and when a 
mix of sides and angles are known and the unknown sides and angles 
are to be computed.

First scenario 
We well know that when we know the measure of all three angles 
of a triangle we cannot make one specific triangle, there would be 
infinite combinations of valid three sides. However, the ratio of sides 
in such disparate triangles would be the same, because the angles in 
such triangles have the same measure (recall, angles and ratio of sides 
is the more universal relationship between angles and sides.) Thus, 
in triangles where we know the angles, we use the given angles to 
find the ratio of sides, the exact length of the sides could be any as 
long as the ratio of the sides is maintained for the given angles. When 
the three angles of a triangle are known, the closest we can come to 
knowing about sides is their ratio.

Let us closely observe the following triangles with known angles, 
such as 30˚, 60˚, and 90˚.	

60°

30°
A B

C
60°

30°
A B

C 60°

30°
A B

C

Triangles of varying sizes with angles 30˚, 60˚, and 90˚

Visibly, the one truth about the sides is that the ratio of any two sides 
of one triangle is equal to the ratio of the corresponding sides of other 

triangles. For example, 
AC
AB

 in all three triangles would be similar. 
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This relationship of a given angle and the ratio of sides in all triangles 
(made of the given set of angles) is formalised using the mathematical 
operation called function.

When the three angles of a triangle are known, the closest we can 
come to knowing about sides is their ratio.  

Mathematics is a beautiful and powerful knowledge also because 
it invented functions. ‘FUNCTIONS’ take some input quantities and 
‘process’ them to get an output quantity. They convert one kind of 
quantity into another. We would use functions which will convert 
angles into ratio of sides. 

Mostly, functions are explicit and quantitative relationships 
between two or more quantities. A function defines how one quantity 
(the dependent variable) depends on one or more other quantities 
(the independent variables).

One of the distinctive features of a relationship that is a function 
is that for every set of input(s), there is only one and only one 
corresponding output quantity, and it will always be the same for 
those inputs. In other words, a function assigns a definite output 
value to each (set of) input value(s).

1 x

2
y

3

r4

Input Output

A function is a relation that assigns to each input exactly one output

The functions that relate the measures of triangles (which are only 
of two kinds – angles and sides) are called trigonometric functions; 
recall, trigonometry is the study of the relationships between the 
measure of angles and length of sides of triangles. Importantly, the 
trigonometric functions are applicable to all kinds of triangles, not 
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just to the right triangles because all kinds of triangles bear a direct 
relationship between their angles and sides.   

We are focusing only on the trigonometric functions applied to the 
angles of right triangles because it is simpler to study right triangles. 
Also, all non-right triangles could be seen and studied as two right-
angled triangles. That’s why, the school syllabus focuses on the 
trigonometry and trigonometric functions of right triangles.

Trigonometric functions take angles as inputs and produce the 
ratio of relevant sides as output. We have already explored how angles 
of triangles bear a direct relationship with the ratio of sides, rather 
than just the length of one side.   

The term ‘trigonometric functions’ is indeed a more encompassing 
and intuitive name for these mathematical functions, especially when 
compared to referring to them as ‘trigonometric ratios’ (the more 
common name in school textbooks).

However, there is a natural query arises – what if the ratio of sides 
is known and the relevant angle needs to be determined?

We can use the inverse trigonometric functions to find the angle 
when we know the ratio of the sides. 

Inverse trigonometric functions take the ratio of the length of sides 
of the triangle as their input and produce the relevant measure of the 
angle of the triangle.  

Let us start with finding out how many ratios of sides exist in a 
right-angle triangle. Consider the following right triangle. 

Perpendicular 
(P)

C

BA

Hypotenuse 
(H)

Base 
(B)

θ

A right-angled triangle ABC

There are six possible ratios of sides in the triangle –
P B P H H B, , , , ,
H H B P B P
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We need six different functions, which when applied to the angles of 
the triangle give us six ratios as their outcomes. 

It is easy to appreciate that in all right triangles, one angle is always 
90˚, and any two right triangles are different only in terms of the other 
two angles (θ, ɸ in the given figure). Thus, all the ratios of the length 
of sides of a triangle are linked to a distinct function with respect to 
an angle (θ or ɸ).

Here is a table of six trigonometric functions of angle θ.  

Assumed 
Function 

Name
Ratio of sides

Trigonometric 
Function 

Name

Trigonometric 
Function (of 

angle θ) 
First 

Function 
of angle θ

∠θSide opposite to
Hypotenuse of the triangle

Sine Function 
of angle θ sin θ = P

H

Second 
Function 
of angle θ

∠θSide adjacent to
Hypotenuse of the triangle

Cosine 
Function of 

angle θ

cos θ = B
H

Third 
Function 
of angle θ

∠θ
∠θ

Side opposite to
Side adjacent to

Tangent 
Function of 

angle θ

tan θ = P
B

Fourth 
Function 
of angle θ ∠θ

Hypotenuse of the triangle
Side opposite to

Cosecant 
Function of 

angle θ

cosec θ = H
P

Fifth 
Function 
of angle θ ∠θ

Hypotenuse of the triangle
Side adjacent to

Secant 
Function of 

angle θ

sec θ = H
B

Sixth 
Function 
of angle θ

∠θ
∠θ

Side adjacent to
Side opposite to

Cotangent 
Function of 

angle θ

cot θ = B
P

Similarly, we can link all the six ratios of length of the sides to the six 
trigonometric functions of angle ɸ. 

The multiplicative inverse functions of sine, cosine and tangent 
The six trigonometric functions of angle (θ or ɸ) have their inter-
relationship in terms of the ratio of the sides. 
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The cosecant function of angle θ is the reciprocal of the sine function 
of angle θ. Similarly, the secant and cotangent functions of angle θ are 
reciprocal of the cosine and tangent functions of angle θ respectively.

Thus, the cosecant, secant, and cotangent are not the inverse 
functions of the sine, cosine, and tangent. They are the multiplicative 
inverse functions.

Multiplicative Inverse 
Functions In terms of Sides Result

1cos ec
sin

θ =
θ  

H 1
PP
H

= cos ec sin 1θ × θ =

1s ec
cos

θ =
θ

H 1
BB
H

= s ec cos 1θ × θ =

1cot
tan

θ =
θ

B 1
PP
B

= cot tan 1θ × θ =

Second scenario 
All angles can be found if the lengths of all sides are known. But how 
can we do it mathematically without actually measuring the angles? 
We can use the inverse trigonometric functions to find the measure 
of angles when we know the ratio of the length of sides. 

Inverse trigonometric functions take the ratio of the length of sides 
of the triangle as their input and produce the relevant measure of the 
angle of the triangle.

The inverse of the sine, cosine, and tangent functions is written as 
sin-1, cos-1, tan-1. 
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Trigonometric Functions 
of an Angle is Ratio of Sides

Inverse Trigonometric Functions 
of Ratio of Sides is an Angle

sin θ = P
H

1 Psin
H

−   = θ 
 

cos θ = B
H

1 Bcos
H

−   = θ 
 

tan θ = P
B

1 Ptan
B

−   = θ 
 

cosec θ = H
P

1 Hcos ec
P

−   = θ 
 

sec θ = H
B

1 Hsec
B

−   = θ 
 

cot θ = B
P

1 Bcot
P

−   = θ 
 

Trigonometry itself is quite a big deal, and inverse trigonometric 
functions simply scare us all, even in Grades XI-XII.

But, as we see above, inverse trigonometric functions are just 
another way of expressing the ratio of sides! Of course, the inverse 
also simply asserts that just like all functions have an inverse, 
trigonometric functions also have the inverse.

Angles
Ratio

of
sides

Inverse Trigonometric functions

Trigonometric functions

Trigonometric functions – Angles gives ratio of sides; 
Inverse trigonometric functions – Ratio of sides give angles
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An illustration of trigonometric functions and inverse functions 
What is the measure of L?

65

35

L
?

       

Opposite side 35Tan(L) = =
Adjacent side 65

Strictly speaking, we have to find the measure of an angle given 
the ratio of the length of sides. The trigonometric functions – sin, 
cos, and tan – give us the ratio of the length of sides, given one of 
the acute angles of right triangles. But the need of the question 
is just the opposite – we have to find the angle given the ratio of 
the sides. This is a basic and classical case of using the inverse of a 
function – using a function to do the opposite of what it is made 
to do! Thus, if we use the inverse of the tan function, we will get to 
use it to find the angle for a given ratio of sides! We use an inverse 
trigonometric function here!

–∠ 1 35L = tan
65

Third scenario
In case the known is a mix of angles and sides, for example, two 
sides and one angle of a triangle are known, the computations do not 
change except for more arithmetical steps. The above two scenarios 
still hold true and adequate.

Summing up 
The sine, cosine, and tangent (abbreviated as sin, cos, and tan) are 
three primary trigonometric functions, which relate the angle of a 
right-angled triangle to the ratios of two sides’ length.

The sec, cosec and cot are the multiplicative inverse of the primary 
functions, respectively; what it implies is that sec, cosec, and cot are 
the arithmetical reciprocals of their respective primary function's 
ratios of sides. The inverse trigonometric functions do the exact 
opposite of the functions – they take the ratio of sides as input and 
give the measure of the corresponding angle.
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An introduction to 
‘Mathematised Calculus’

Calculus is real-world mathematics, far more than counting, 
numbers, arithmetic, (Euclidian) geometry, algebra, etc.; do not let 
your mind revolt against the statement, for example, when we count 
four apples, it does not mean the weight of the four apples are exactly 
alike (the weight of any one apple is approximate for the three).  It 
is the most intuitive of all mathematical objects and concepts. No 
child can be struggling with visualising and verbalising calculus. 
Calculus education is all wrong; for the best of ‘K-12 toppers’, it 
starts and ends with limit and continuity. 

A highly practical, real-world, and intuitive understanding 
of calculus is what we call ‘mathematised calculus,’ and that 
is what should be the content of calculus education in school 
years. Pertinently, it also best handholds us through the methods 
of calculus – mathematised calculus is the usual arithmetic, 
algebra, and trigonometry once past the foundational ideas and 
principles of calculus.

At its heart, calculus is about a world of derived quantities, the 
derivatives. There are many physical, real, critical entities, such 
as speed (and velocity), acceleration, electric current, power, 
electromagnetic force (comes alive due to magnetic flux), chemical 
product formation cycle, marginal cost, and utility, etc. that are not 
directly/physically measurable. For example, power is derived out 
of energy/work capacity and current is derived out of the amount of 
electric charge flow in a circuit in a given time; more importantly, 
both power and current are ‘independently’ meaningful and 
important quantities.
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Expectedly, calculus is also about the opposite – the anti-derivative 
(integral), undoing a derivation process to get the quantity that was 
used to get the derivative. For example, the average velocity over 
a period is the anti-derivative of acceleration (itself a derivative of 
velocity) and volume is the anti-derivative of area. Similarly, derived 
quantities could be used to derive another quantity – the double 
derivative. For example, acceleration is the derivative of velocity, the 
latter is the derivative of distance travelled (over a period.)  

Derived quantities (derivatives) originate in change, detail the change.  
All the aforementioned derived quantities, and all the others, have 
one thing in common – they are the rate of change of a ‘changing 
quantity’! For a (continuously) changing object/situation, its rate of 
change is the real deal, the determinant of many things that matter 
about that change. For example, speed (at various instants of time) 
is the rate of change of distance traversed and determines the impact 
of accidents, the possibility of skidding at a sharp turn, etc. 

Calculus is about measuring change; to be precise, measuring 
the change as it occurs – the change at different instants in relative 
terms (with respect to time or any variable quantity) to make more 
sense of the change. For example, knowing the amount of distance 
travelled is of little value until it is relatable to the time period of 
that travel. 

Anti-derivative describes the effect of change, not details of 
change. It is the opposite – not the change at any instant, but the 
cumulative of the instant changes over a period of time (or any 
other variable quantity.) It is like a sum of the different ‘instant, 
or infinitesimal’ values.

What is the nature of changing values? Relevantly, for a changing 
quantity, an (infinite) series of the actual values of the changed 
quantities would need to be measured to understand it. But, a 
series of such numbers will be mathematically unwieldy and yet 
incomplete with respect to recording the changing quantities (we 
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will soon exemplify this.) Changing quantities are precisely and 
comprehensively expressed using mathematical entities called 
functions, without explicitly listing every individual value. Briefly, 
functions are like input-output converters, quantifying a certain set 
of output for a set of input quantities. 

Every ‘uniquely varying quantity’ is a ‘unique function’. Every 
changing quantity is expressed as a function. Thus, we find derivative 
and anti-derivative of functions. 

Functions – The mathematical innovation to capture all instantaneous 
values  
Imagine a bike whose speed at every one second interval is as under:

Time 
(sec) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Speed 
(m/sec) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

There are three obvious challenges with this instant values of 
motion: 
•	 No pattern is directly visualisable (we need to graph it to really 

see the pattern in motion).
•	 There is no way to know the speed of the bike at any time other 

than given, for example, the speed of the bike at 3.5 seconds.
•	 To know more about the motion, tedious mathematical 

operations would be needed; for example, to know the nature 
of the acceleration of the bike, the acceleration values have to be 
computed for all 14 pairs of speed (start to the first second, first 
second to the second second, etc.).

However, we can overcome all the aforementioned challenges if we 
‘summarise’ the speed and time relationship through a function. 
And that function, in this case, is ‘speed = time’, s(t) = t (speed 
as a function of time is such that its magnitude is same as the 
magnitude of time itself, at all times between the start and the 
fourteenth second); it is more commonly written as f(x) = x.
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y

s(t)

t

x0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Speed-time graph

The entire world of mathematical measurement of change is 
founded on functions. The function gives the (infinite) series of 
instantaneous values.

When dealing with continuous quantities, functions are the 
primary mathematical tool for their representation because they 
can describe how these quantities change continuously. Continuous 
functions provide a powerful framework for modelling, analysing, 
and making predictions in various fields like engineering, science, 
business, etc.

Typically, situations quantifiable by counting represent discrete 
quantities, and those that need to be measured, or derived, and 
can take on an infinite number of values within a given range, are 
the continuous quantities. So, distance and time are continuous 
quantities whereas the number of students in a classroom is a 
discrete quantity.

However, functions can also be used for discrete quantification. 
Planning and controlling the efficiency of the production of limited-
size batches of something is an example of creating functions for each 



Mathematising Mathematics    63

discrete situation. For example, the number of batches produced, the 
number of items in each batch, the number of machines used, and 
the number of workers are typically whole numbers. Continuous 
functions need real numbers to be quantified.

How do we compute the rate of change to find derivatives?  The rate 
of change of a function at an instant, or condition, is the slope of its 
graph at that instant. Let us not forget that the rate of change varies 
in a changing quantity, thus, we think in terms of the rate at a point 
on the graph. 

Q
R

P

y

x0 x

f(x)

The slope of the tangent PR at point Q is the rate of change of the 
curve/function at Q

Welcome the idea of limit! Using the idea of limit, we make the 
slope of the tangent at a point becomes the best approximate value 
of the slope of the function at that particular point. Limit is the 
‘science’ of infinitesimal quantities, a conceptual breakthrough in 
mathematics that laid the foundation of calculus – limit allows us 
to consider an infinitesimal part of the graph around a point that 
almost overlaps with a straight line tangent at that point. Recall, 
the slope of a tangent around a point is obtained by the simple 
rate formula. 

Consider a horizontal tangent at point C and points C' and C'' 
close to C. 
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CC' C''

CC' C''

y

x0 x

f(x)

The figure on the right is an ‘infinitely enlarged’ view of an infinitesimal part of the 
left curve 

As the points C' and C'' get closer and closer to the point of interest 
C, the line becomes smaller and smaller while the slope of the line 
changes. When the points C', C, and C'' are closest possible, the 
line becomes a tangent and the steepness (slope) of this line gives 
the best approximate value of the slope of the curve at the point of 
interest (point C). Another way to look at it is as follows.

Guaranteeing that limit does not go wrong! The concept of 
continuity complements the advantages of limit, by ensuring that 
the chosen infinitesimal part of the graph around the point to find 
the rate of change does actually represent the slope of the function 
at that point. Any sharp variation in the slope of the graph at that 
point is detected as a lack of continuity of the same slope at that 
point. In such situations, the limit of the function is said to not exist 
at that point, i.e., the slopes of the function just before and after the 
point are not the same. 

What is the greatest deal about calculus? The derivative and anti-
derivative of a function are the same for all the valid inputs for the 
function (the domain of the function). For example, the derivative 
of f(x) = x2 is 2x, and it implies that the derivative at the point x = 2 
is 4, and the derivative at the point x = 8 is 16. 

There is more – solving calculus questions does boil down 
to knowing or computing the derivative or anti-derivative of the 
individual terms in the question and then following the usual 
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simplification of the expression much like solving algebraic or 
trigonometric questions. 

We are ready to consolidate this introduction of derivative, anti-
derivative, limit and continuity as we read ahead the ‘mathematised 
calculus’ chapter.

A note on calculus and 2023!
The idea, joy, and applications get completely lost in calculus 
education due to its singular and rigorous rooting in the idea and 
computations, limit and continuity. 2023 is an -interesting milestone 
in calculus, and its education. In 1823, the French mathematician, 
Augustin-Louis Cauchy presented the text Résumé des leçons sur 
le calcul infinitesimal (‘Summary of Lectures on the Infinitesimal 
Calculus,’), his first book devoted to calculus, originally written 
to benefit his École Polytechnique students in Paris. The book is 
a remarkable work of conceptual vision and laid the foundations 
of the rigourised, formalised, particularised, and proceduralised 
foundations, concepts, and practice of using calculus. 

The book had a sweeping effect on mathematics as a whole, and 
it massively guided and accelerated the development of ‘abstracted 
and methodised mathematics.’ However, it was meant to popularise 
and strengthen the correct applications of calculus among engineers 
and scientists. It was not meant to be used in introductory calculus 
education in schools, but that is exactly what happened, and an 
intuitive understanding of calculus was lost.
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Change is the only constant 
Change is an inherent and unchanging reality of our world.  Change 
refers to any alteration, modification, or transformation in the 
conditions of an object or situation (system). It can occur gradually 
and steadily over time without distinct breaks or interruptions 
or can be abrupt and sudden. Erosion and weathering of rocks, 
adaptation, and evolution of living things are changes that are 
very slow while volcanic eruption, earthquake, and landslide are 
examples of sudden changes. Continents, which seem fixed and 
immovable, are actually in continuous motion – a few centimetres 
per year. Middle school physics is built on the notion of constant 
acceleration (recall, F = m.a), but constant acceleration is a myth 
(even in deep space travel). 

Let us not be deceived by many things around us that seem stable 
or unchanging, it is only a simplification of reality to make it easier 
to understand and compute at a preliminary, best approximate, and 
conceptually correct level. For instance, when we talk of averages, 
such as average speed over a 5-hour journey, we do not mean that 
the average speed was even momentarily an actual speed, it is just 
one good approximation of a range around which the speed lay 
in those 5 hours. The actual speed at different instants was not a 
constant that the average speed is computed to be.

The undeniable truth is that everything is in a continuous state of 
flux, change is the best hallmark of how our world is. To precisely and 
comprehensively understand our world, we need to explain and also 
measure the way change becomes evident in all things around us.
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To understand the world, we need to the understand the change 
Fortunately, our world can be visibly categorised into two broad 
kinds of objects –
1.	 Objects that are stationary (buildings, trees, books, …)
2.	 Objects that move, or are in motion (motion may be the 

most ancient human fascination, starting with the motion of 
celestial objects)

Importantly, it is natural to think of change in stationary objects 
only through the lens of change in their position. But this would be 
missing the point about the change in stationary objects – change 
in such objects may also be in their weight, dimensional measures, 
the composition of matter in them, and others (to name just the 
quantitative descriptors). 

Thus, the first characteristic of a change in an object is any kind 
of measurable difference in it between two instants of time, or 
any other conditions (such as in response to a change in pressure, 
temperature, etc.)

One of the special measurable differences of this kind is also the 
change in the dimensional measures – surface area, and volume 
(space occupied by a thing) of objects.  For instance, imagine a 
rectangular packet of tea leaves tearing apart and a heap of the same 
tea leaves forming on the ground; the surface area of the heap and 
the packet would have changed (not the volume). And the usual 
geometric computations would not help in finding the surface area 
of the heap. 

Similar computational challenges abound when attempting to 
find surface areas and the volume of ‘curved objects’, such as the 
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following; (Euclidian) geometry does not work for curved surfaces 
and objects.

   
   
As to things that move, or are in motion, it is intuitive to think of 
the motion itself as representing change. Indeed, it is – change of 
position/place of the object in motion – but that is what motion 
is inherently about; there is no motion unless and until there is a 
change of position involved in it. However, a steady motion wherein 
the distance travelled, the time taken for that travel, and the direction 
are the same (if the direction is also relevant) over a time period, the 
motion would not be called to be changing. The motion would be 
said to be changing only when the direction and/or the distance 
travelled over the same time period changes.

Changing motion is literally the norm across the universe. 
All celestial bodies move along a curved path, may it be circular, 
elliptical or parabolic, hyperbolic, etc.; elliptical movements are the 
most common ones. This implies that the direction of motion of 
the celestial bodies constantly changes, and also implies that the 
distance traversed in fixed time intervals also changes constantly 
(in elliptical and parabolic motions).   

Thus, change occurs IF a relationship between two, or more 
quantities is NOT steady; for example, if a body is moving in a way 
that the distance travelled by it over periods of time is different, 
then the motion is said to be changing. 

Happily, graphs of the relationship between quantities are a very 
easy way to identify existence as well as the nature of change between 
the quantities. Here are a few examples of how graphs can show if 
change exists in a relationship, and how does the change look like:
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Interestingly, change can be registered only when it can be objectively 
measured quantitatively (for example, change in numerical 
values, 30°C to 45°C) or qualitatively (for example, change in 
colour or texture). However, change as a subject of mathematical 
interest implies changes occur when quantifiable relationships 
are not steady.  

Quantifying change – A series of instant values 
It is very interesting to realise that the biggest and quickest of 
changes are also in ‘slow motion’, steady, gradual, or what may be 
called ‘a series of unique instantaneous values’. Time is amazingly 
divisible, and a change that appears in just one-tenth of a second 
is also slow and steady when looked at time frames that are one-
hundredth of a second. The first one-hundredth second of the start 
of that change will register some kind of quantitative difference, the 
second one-hundredth second will bring in another quantitative 
difference (that will add to the quantitative difference of the first 
one-hundredth second), and so on. 

The amount of change that is measured between the zeroth 
second to the one-hundredth second is the amount of change in 
the first one-hundredth second, and the amount of change between 
the end of the first one-hundredth second to the end of the second 
one-hundredth second is the amount of change in the second one-
hundredth second. 

At some slicing of time, all changes are just a series of many 
instantaneous values of change (all adding up together). Thus, to 
know a change, we need to study it as a series of instantaneous 
changes; the instants depend on the pace of the change, it could be 
the amount of change per minute, per second, per millisecond, etc.      

However, the idea of instant has very interesting implications for 
actually measuring change. An instant means now and it is almost 
in some changes, the magnitudes between the beginning and end 
of observation could take an infinite number of possible values. 
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Such changes could be considered as an accumulation of an infinite 
number of infinitesimal or ‘infinitely small’ changes, occurring at 
each moment or instant. Such changes are so small that the change 
occurring between two precise ‘moments’ is nearly imperceptible. 
For example, the change in height of a child between his first and 
second birthday. 

When we consider all the infinitesimal changes at all instants 
together, it creates the impression of an unbroken, continuous change 
in a system and gives a complete understanding of the behaviour 
of the change. When graphed, these changes are represented as a 
continuous line or curve.

To understand the events that are an accumulation of infinitesimal 
changes, and can change at any point and in any magnitude requires 
a language or framework that can effectively describe these dynamic 
and evolving systems. This mathematical language that represents 
continuous changes is a function. 

Function – Capturing realities in mathematical expressions
Functions are mathematically expressed relationships of real-world 
situations, and they are such that for each change in any of the 
variables in the relationship, however small, a change is observed in 
some other variable of the relationship.

Continuous functions are a fundamental tool for understanding 
and making predictions about the behaviour of continuously 
changing systems in a wide range of fields. They enable accurate 
modelling, analysis, and optimization, making them essential for 
addressing complex and real-world problems.

To know more about continuous functions, refer to the Note 3 at 
the end of the chapter.

One of the real-world situations expressed as a function is the 
relationship between distance (D) and time (t) where both are 
variables and distance is dependent on time, i.e., D = f(t). Here, 
‘D is a function of variable t’ means that there is a mathematical 
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relationship that describes how D changes or depends on changes 
in t. So, the function ‘f ’ takes the value of ‘t’ as input and produces 
the corresponding value of ‘D’ as output.  There is a unique value of 
D for every value of variable t.

Various mathematical functions define real-world situations, 
such as f(x) = x2 is a quadratic function that represents a parabolic 
path, f(x) = x2 + 4 is a quadratic function with a vertical shift such as 
energy levels or distances with a constant offset, f(x) = 1

x  is a rational 

function that describes situations where one quantity is inversely 
proportional to another, f(x) = sin x is a trigonometric function 
representing a sine wave that models oscillatory behaviour, etc. It is 
written in a way that one quantity is seen as varying, or dependent 
on the way other quantity (independent) vary. For example, in the 
function, y = sin x, where x is the independent quantity and as x 
varies the value of y (dependent quantity) varies. The notation 
commonly used to represent to describe functions is either y or f(x).

Functions as input and output processors
Input is a quantity that is ‘entered’ into a function. The quantity 
should be such that it is valid for the function, for example, the 
function f(x) = x  is only valid for positive values of x. And, after 
processing, f(x) returns a value, the output. For example, if x = 4 
then the output f(x) is +2 and –2. 
The possible set of valid values of the ‘input,’ the independent 
variable, is called the domain of the function. The processed set of 
values of the output, the dependent variable, is called the range of 
the function. 

Finite set of functions
Function f(x) = x2 represents a parabolic function and function    
g(x) = ax + b represents a straight-line, both being algebraic 
functions. However, h(x) = sin x, expresses a sinusoidal wave and is a 
trigonometric non-algebraic function. We can categorise functions 
more elaborately as follows:
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Algebraic

Trigonometric
f(x)=sin (x + 5)

Exponential
f(x) = 4x

f(x) = ex

Logarithmic
f(x) = log x

Composite

Non-Algebraic

Functions

Polynomial
f(x) = 

x5 + x4 + 2x2 – 5

Rational Power 
f(x) = x5−

−
9x 5f(x) =
2x 1 3f(x) = x

 
 
  

 
 

2x + 3
7x + 13x + 1f(x) =

3x + 5

Different categories of functions

Instantaneous value of a function
Instantaneous value is essentially the value of the function at a specific 
point in time or space, taken at an infinitesimally small moment. 
For modelling and analysing various natural phenomena and real-
world systems, we need to quantify the change in instantaneous 
values of the function. 

The challenge in computing change in instantaneous values
The challenge in finding the change in instantaneous values or 
rate of something is the measurability of changes at that particular 
‘instant, or point/condition (for example, measuring distance 
travelled at an instant, i.e., measuring the distance covered for a 
duration that is nearly zero). The divisor in such computation of 
rate is nearly zero (we call these nearly zero quantities ‘infinitesimal’, 
which means infinitely small). Mathematically, such quantities/
numbers can be visualised but any attempt to physically measure 
such changes is near impossible; imagine measuring the distance 
travelled by car in 0.001 seconds (0.001 seconds being the time 
assumed to represent ‘an instant’). 

Thus, there are three challenges which we face while computing the 
change in instantaneous value or rate of something:

•	 The physical challenge to precisely measure a small quantity 
within a short time frame.

•	 The computational challenge in which the divisor is almost zero.
•	 The conceptual challenge that such small quantities do exist.
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Solving the physical challenge of instantaneous values
Physically, it is impossible to correctly measure a quantity which is 
small in magnitude for a small measurement window. This physical 
challenge is resolved by using the idea of an indirect quantity, a 
derived quantity. 

A derived quantity is a new, special quantity derived from another 
quantity (primary quantity). It is the quantification of some new 
aspect of a change in primary quantity. It is not a directly measurable 
quantity. It can only be computed using primary quantities.

Here are some examples of the derived quantities – power is the 
quantity derived from the primary quantity energy/work; force is 
derived from momentum; electric current is derived from electric 
charge; and electromagnetic force is derived from flux.

The derived quantity is called the derivative of the primary 
quantity out of which it is created.

Derived quantities out of function
Functions represent the world of relationships among quantities, 
and they are also the source of deriving new quantities or 
information from the primary quantities. This derived quantity or 
the new function obtained from the primary or original function is 
the derivative of that function. 

The derivative of a function is the mathematical operation 
that works on a function to ‘derive’ indirect meaning(s) from the 
function. The primary meaning of a function lies in the relationships 
it represents between quantities; for instance, interest amount is the 
direct meaning derived out of the function that relates interest earned 
on a principal amount deposited in a bank for a time. From the 
derivative of this function, we can obtain indirect information, such 
as the instantaneous rate at which the interest is accumulating etc. 

Derivative quantifies some new aspect of a changing quantity, 
for example, when we know the relationship between time and 
distance traversed by an object in motion, we can derive the speed 
and acceleration of the object in motion. The derivative represents 
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the rate of change of distance (the ‘something else’) with respect 
to time. Evaluating the derivative at a specific instant gives us the 
instantaneous speed (the ‘something’) of the object at that moment. 
To be precise derivative gives a very specific new knowledge about 
something in change – the instantaneous value of ‘something’ with 
respect to the change in ‘something else’. 

The conceptualisation of the derivative of a function can be 
visualised as detailed hereunder:
•	 Something is continuously changing (slow, fast, regular or 

irregular …); for example, a car in motion continuously changes 
its position. It can change its position at a fast pace when on a 
highway or at a slow pace when in a traffic jam. Whatever the 
case is, it is continuously changing its position.

•	 The change in position is measured by a (physically measurable) 
quantity. Distance is that quantity which measures the change in 
position of any object in motion.

•	 The quantity that reflects the change in motion is distance. It 
indicates the change happening for any moving object. 

•	 The rate of change of that quantity could also be changing. The 
change in distance in the various units of time could also be a 
variable, changing; for example, more distance is traversed in a 
certain period, as compared to an equal another period. 

•	 The instantaneous value of the rate of change represents 
‘something else’ which is another quantity related to the original 
quantity being measured. The rate of change of distance with 
respect to time represents speed, which may also change.

•	 The value of ‘something else’ is the value derived out of another 
quantity. Speed, which is the rate of change of distance with 
respect to time, is derived from distance.

•	 The derived quantity is called a derivative. Speed is the derivative 
of distance.

•	 The derived quantity is not a direct/primary measurable 
observation. Speed cannot be directly measured; in the way 
distance and time are measured. 
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•	 The derived quantity changes in tandem with the change in rate 
of change of the primary quantity. As the distance (which is the 
primary quantity here) varies over the different time periods of 
motion, the speed (which is the derived quantity out of distance) 
also varies.

•	 Theoretically, a derived quantity is also a function which can 
change with respect to any other quantity. It must be possible 
for the derived quantities to derive another quantity. The rate 
of change of velocity/speed is acceleration. Acceleration is thus 
derived out of velocity, which is in itself a derived quantity out 
of the changing distance.

Mathematical expressions using derivatives (Differential equations)
Recall that algebraic expressions are combinations of constants and 
variables that are put together using mathematical symbols, and 
algebraic equations are expressions that are set equal to zero. It is 
interesting to think that equations can also have expressions that 
incorporate changing conditions quantified through the rate of 
change. Such expressions are common, we mathematically express 
them every day and when used under scientific conditions, for now, 
they are called derivative equations or differential equations.

Wherever there are changing quantities in the ‘equation’ of a 
thing, the situation is mathematically expressed as differential 
equations. These equations can be used to configure everyday life 
to rocket science.
Refer to Note 4 to learn more about the differential equations.  

Anti-derivative of function 
As the name suggests, it is mathematically the opposite of the 
idea and the operation of the derivative. Let us construct the 
understanding of anti-derivative – one dimension at a time, out of 
the definition of derivative. 

We know that a derivative is a function that gets created from 
another function. Thus, the anti-derivative must also be a function 
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created by another function; (both ‘input and output’ of the 
derivative is a function, so the reverse view of derivative will also be 
‘input and output’ as functions). For example, the function of speed 
gives the function of motion itself, the function of distance (motion 
is about a change of positions, distance), to be precise.

Function of Distance Function of Speed

Derivative

Anti-derivative

Next, we know that a derivative is a rate. The implication of being a 
rate is that it is a slice of the action, a ‘part of a whole.’ For example, 
the speed at an instant in a motion. What may be the anti (or 
opposite) of a ‘part of a whole’? ‘The whole’ itself. For instance, what 
may be the anti-derivative of the (derivate) speed?

Let us take a second to scrutinise speed; it is the distance travelled 
in a unit of time (whatever be it), and it is a part of the (total) 
distance travelled. Indeed, a speed of 54 m/s implies that each slice 
of 1 second of motion is a distance of 54 m. The anti-derivative of 
speed is, in fact, distance, ‘the whole’. 

Of course, in the story of anti-derivative, ‘the whole’ needs to be 
identified because ‘a whole’ could also mean the universe. ‘A whole’ 
as anti-derivative needs to be specifically limited, and that is what 
is next explored.

We also know that a derivative is the value of something at an 
instant. What may be the opposite of an instant? A period of time, 
an interval of time. Indeed, anti-derivative qualifies (i.e., further 
explains) the quantity discussed previously (total distance travelled). 
The opposite of an instant is accumulated time or a period of time. 
And to the extent that anti-derivatives operate over a specified range 
of values of the changing quantity, the specification of that range 
is an input in finding anti-derivatives. Thus, the anti-derivative 
quantifies how much something has changed over a time period. 
Anti-derivative is kind of a difference between two quantities – one 
at the start of the period or a state of things, and the other at the 
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end of the period or state of things. Another way to see it is the 
summation of the changes or cumulative changes over a period or 
the range of change of another thing. 

Common examples of the application of anti-derivatives to find 
out the amount of change in something (that is changing) are – from 
the anti-derivative of the function that represents the rate at which 
the tumour grows over time, the accumulated change in the size of  
the tumour inside the body of animals can be obtained.  The anti-
derivative of the function that represents the rate of population 
growth over time can be used to find the total population increase 
over that time interval. The impact of a head-on collision of two cars 
is a series of (very fast happening but) small changes in position after 
the collision. The anti-derivative of the function that represents the 
positions of the crashing parts of the cars can be used to provide the 
cumulative change or the displacement of the cars during the collision.  

Here are a few more examples of the deployment of the idea and 
operation that is anti-derivative: 

Average/ 
Function Anti-derivative Explanation

Function Average value of a 
function

Average value of a function over a 
range is the anti-derivative of the 
function.

Area Volume
Volume is the anti-derivative of the 
area; over a dimension; similarly, 
area is the anti-derivative of one 
dimension.

Density 
function Mass

Mass of an object is the  
anti-derivative of a density function 
(which is mass per unit volume) 
over a given volume.

Let us find the derivatives and anti-derivatives of functions through 
their graphs. But before this, read about slopes from Note 1 and 
Note 2 given at the end of the chapter. 
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Derivative of f(x) = x
The derivative of a function at a point is the rate of change of the 
function at that point. Graphically, the rate of change of a function 
at a point is the slope of the curve at that point. A study of the slope 
of a curve indicates the derivatives of function at various points.

Consider f(x) = y = x which represents a linear function. The 
derivative/slope at each point within a domain of the function 
(the possible values of the input value x) having a linear graph is 
constant, that is, y changes at the same rate or constant value within 
the domain of the function.

f(x
) =

 x

2 4–2–4

2

–2

0

y

x

Various tangents on the linear graph of f(x) = x
Since the slope is always a constant value for a linear function, 
the derivative of a linear function is a constant function and can 
be represented mathematically as g(x) = c, (c is any constant) and 
graphically as a horizontal line parallel to the x-axis. 

For linear function f(x) = x, the slope is 1. Therefore, the derivative 
of f(x) is g(x) = 1, the slope of the given function f(x) = x, which 
is a constant function representing a horizontal line parallel to the 
x-axis. We will derive it mathematically later.

g(x) = 1

2 3 4 510–2 –1–3–4–5–6

–1 

2

1

x

y

Graphical representation of derivative g(x) of f(x) = x
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Since, the graphs of all linear functions are derived from the graph 
of y = x and possess the same properties, the slope/derivative of all 
linear functions is a constant.

Derivative of f(x) = x2

It is convenient to study the derivative of any function through its 
graph, and we will work with the graph of the given function f(x) = x2 
to find its derivative. 

Recall, the derivative of a function is also a function and in its 
graph, the x-coordinate is the same as the function’s x-coordinate 
and the y-coordinate is the value of the slope of the given function.

Thus, for the given function, we need to study the behaviour of 
the slope at different points of its graph to get the corresponding 
points to plot the graph of its derivative function.

Let us consider the graph of the given function f(x) = x2, along 
with three tangents drawn at different points, to discuss the nature 
of the slope of the function.

f(x) = x2

1

0

2

3

4

5

x1–1–2–3–4–5 2 3 4 5

y

Graphical representation of f(x) = x2

We can observe the following in the graph of f(x) = x2:
•	 For negative values of x, the slope of the given function is 

negative and for positive values of x, it is positive. 
•	 The slope is zero at x = 0, where the tangent is horizontal to the 

x-axis, in fact, it coincides with the x-axis. 
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•	 Based on these observations, two imperatives emerge for the 
derivative function of the given function, f(x) = x2, where the 
derivative function’s value is the slope of the given function 
(whose derivative is supposed to be explored).

•	 The derivative function passes through the origin, since at x = 0 
the slope is 0. 

•	 The values of slopes are increasing for x > 0 and decreasing for 
x < 0. 

This suggests using the above arguments, the possible derivative 
function graphs could be any of the following y = x, y = x3, and y = x5.

x

y

g(x
) =

 x

g(
x)

 =
 x

3

g(
x)

 =
 x

5

Graphical representation of possible derivatives g(x) of f(x) = x2

However, we also observe a gradual decrease/increase in the 
graph. This can be affirmed by the values which the function 
takes when the values of x are put in the function f(x) = x2. 

	 When x = 0.5,  	  f(x) = 0.25 
	 When x = 1,   	         	  f(x) = 1
	 When x = 1.1,  	  f(x) = 1.21 and so on. 

Also, there are no sudden dips/rises in the values of the slope of the 
tangents considered in the graph of the function f(x) = x2 because 
it is a continuous function. Recall that the steeper the tangent, 
the more is its value of slope. This suggests that the values of the 
derivative function would not be large for a small value of input. 
That is, the derivative function cannot be a curve such as x3 or x5, 
where for a small value of x we have a large value of the function. 
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This suggests a straight line as a derivative for x2. 

There can be many functions with this possibility that can be seen 
in the graph.

g(x) = x
2

g(
x)

 =
 5

x 
g(

x)
 =

 2
x 

1 2 3 4

2

1

3

4

–1–2–3–4

–1

–2

0

y

x

Graphical representation of possible derivatives g(x) of f(x) = x2

The takeaway from this derivative graph is that the derivative of all 
quadratic functions is a linear function. We have logically derived 
the nature of the derivative function of a quadratic function. Later 
we will explore which of the above graphs is the actual derivative 
graph of the given function.

The derivative of x2 is 2x. For now, let us generalise that the 
derivative of all quadratic functions is a linear function.

Graphically exploring the anti-derivative of speed
y
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The graph represents a car in motion having a linear speed or we can 
say that the speed increases linearly with respect to time, i.e., at t = 1 
min, it has a speed of 1 km/min; at t = 2 min, it has a speed of 2 km/min. 

Since distance = speed × time, it can be best interpreted by the 
shaded region. The anti-derivative of speed is the area of the shaded 
region, which is the distance covered by the car in motion. 

In fact, the anti-derivative of a function is a quantity that is the 
area under the curve of the function.

Anti-derivative of f(x) = x2

We aim to find a function whose derivative is x2. The anti-derivative 
function is one whose range values are the same as the various values 
of the area under the curve y = x2 in some interval.

Let us assume the interval [0, 2]. The graph of x2 in the interval 
[0, 2] can be obtained by making a table of the various points of x 
and the corresponding points of y.

x 0 1 2

y 0 1 4

And, it can be shown as under. 

f(x) = x2

(0, 0)

(1, 1)

(2, 4)

 (     ,      )
2
1

4
1

x

y

Graphical representation of f(x) = x2 in the interval [0, 2]

Arithmetically, it is tough to find the exact area of the region that 
is curved. However, finding its approximate area is always possible 
and that basically serves our current purpose of broadly finding 
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the nature of the function that is the anti-derivative of x2. Logically, 
breaking the intervals [0, 2] into small sub-intervals would make 
better sense.

f(x) = x2

(1, 1)

(2, 4)

1
2

1
4(    ,    )

3
2

9
4(    ,    )

4

3

2

1

0 0.5 1.5 21

y

x
 

Graphical representation of the area under the curve of f(x) = x2 in the 
interval [0, 2]

The area under the curve in the interval [0, x] can be approximated 
by a triangle with base x and height x2. 

f(x) = x2

1
2

1
4(    ,    )

4

3

2

1

0 0.5 1.5 21

y

x
         

f(x) = x2

(1, 1)
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2

1
4(    ,    )
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1

0 0.5 1.5 21

y

x

(a) Area between interval  
  

1
0,

2
           (b) Area between interval [0, 1]

f(x) = x2
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1
4(    ,    )
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9
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f(x) = x2

(1, 1)

(2, 4)
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1
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(c) Area between interval
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          (d) Area between interval [0, 2]
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Area 
in the 
interval 
[0, x]

Area of triangle 1= × base × height
2

Coordinate for 
anti-derivative 
graph (x, area 
in the interval 

[0, x])

 
  

10,
2 ∆ × ×

1 1 11 =
2 2 4

 
 
 

31
2=
2

1=
16

, 
 
 

1 1
2 16

[0, 1]
  
∆

12 = × 1 × 1
2

( )31=
2

1=
2

, 
 
 

11
2

 
  

30,
2

∆
1 3 93 = × ×
2 2 4

 
 
 

33
2=
2

27=
16

, 
 
 

3 27
2 16

[0, 2] ∆
14 = × 2 × 4
2

( )32=
2 = 4 (2, 4)

From the above calculations, we can deduce that the approximate 
area under the curve f(x) = y = x2 corresponding to any interval 

[0, x] is 
3x

2
.

On plotting the coordinates for the anti-derivative graph, we will get 

an approximate graph of the anti-derivative function of x2, h(x) = 
3x

2
. 

This is an approximate value, the real value will be less because the 
curve of the graph is concave. That is, instead of the anti-derivative 

being 
3 x

2
, it can be 

3 x
c

, where c is a real number. 

For conceptual exploration, we can ignore ‘c’, and we can say that 
the anti-derivative function of f(x) = x2 is h(x) = x3. The graph of this 
is as under.
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h(x) = x3

–0.5

1

0.5

1.5

2

2.5

0 10.5 1.5 2 2.5 3 x

y

Graphical representation of anti-derivative h(x) of f(x) = x2 ignoring the 
constant c

Thus, the anti-derivative of any quadratic function of the 
type ax2 + bx + c would be a three degree function. On actual 

mathematical computation, the anti-derivative of x2 is 
3 x

3
.

On combining the result for the linear and quadratic functions, the 
derivative of y = x2 + 2x is the sum of the derivatives of x2 and 2x. 
The derivative of x2 is 2x and that of 2x is 2. Thus, the derivative 
of y = x2 + 2x is 2x + 2.

The anti-derivative of y = x2 + 2x is the sum of the anti-derivative 

of x2 and 2x. The anti-derivative of x2 is 
3x

3
 and that of 2x is 

2
2 2x = x

2
. 

Thus, the anti-derivative of y = x2 + 2x is 
3 x

3
+ x2.
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y

x

g(
x)

 =
 2

x +
 2

3
x3

+ x2h(x) =f(x) =  x2 + 2x

Graphical representation of function f(x) = x2 + 2x and its derivative g(x) 
and anti-derivative h(x)

Now, we can find the derivative and anti-derivative of any function 
through their graphs. But there are infinite functions for infinite 
realities. Fortunately, math is the language to be used for expressing 
patterned conditions and relationships. And, inexplicably, it just so 
happens that just a few tens of patterns (i.e., well-defined, repetitive, 
‘universal’ behaviour) lie at the core of the infinite realities. 
Expectedly a core set of functions – parent functions – do nearly 
express all kinds of situations.

The parent functions
When we graphically represent functions we can see that many 
functions’ graphs look alike and follow similar patterns because 
these functions share the same parent functions. Parent functions 
are basic and the simplest form of functions. These functions serve 
as fundamental building blocks for constructing more complex 
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functions. The complex functions from the same family of parent 
function can be easily recognised/graphed bearing the marked 
features of the parent function. Conversely, by taking the parent 
function’s graph through various shifts, flips or stretches, all the 
functions within a family of functions can be derived. 

There are infinite possibilities for creating a unique function 
from just one parent function. For example, y = x, y = –x, and  
y = x + 1 all represent a family of straight lines that can be seen in 
the given graph.

y  
= x 

+ 1
y  = –x y  
= x

1–1–2–3–4 2 3 4

1

2

3

4

–1

y

x0

Graphical representation of a family of straight lines
If we observe the graph carefully, we will notice that the graph of y 
= x + 1 is shifted up by 1 unit from y = x and both have the same 
shape of the graph. Similarly, y = –x is a reflection of y = x about 
the y-axis. However, both the functions, y = x + 1 and y = –x look 
similar in a definite way. The transformations of the parent function 
in no way change the shape of the parent graph, and follow the basic 
characteristics of the family as defined by the parent function.

As another example, let us draw the graph of y = (x + 1)2. 
Following the standard graphing technique, we create the following 
table of coordinates to plot the points on the graph.

x –3 –2 –1 0 1
y 4   1   0 1 4
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y = (x + 1)2

1

0

2

3

4

5

x1–1–2–3–4–5 2 3 4 5

(1, 4)

(0, 1)
(–1, 0)

(–2, 1)

y

(–3, 4)

Graphical representation of the function y = (x + 1)2

Let us also create the graph for y = x2 using the same graphing 
technique.

y = x2

1

0

2

3

4

5

x1–1–2–3–4–5 2 3 4 5

y

(2, 4)(–2, 4)

(1, 1)(–1, –1)

(–1.5, 2.25) (1.5, 2.25)

Graphical representation of the function y = x2

When the above two graphs are superimposed onto a single graph, 
they would look like:

y = (x + 1)2

y = x2

1

0

2

3

4

5

x1–1–2–3–4–5 2 3 4 5

(–1, 0)

y

If we observe carefully, y = (x + 1)2 is a parabola with its vertex at 
(–1, 0). Its graph is similar to that of y = x2, a parabola, with vertex 
at (0, 0). Thus, knowing the graph and properties of y = x2 can help 

2
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y = (x + 1)2

1

0

2

3

4

5

x1–1–2–3–4–5 2 3 4 5

(1, 4)

(0, 1)
(–1, 0)

(–2, 1)

y

(–3, 4)

Graphical representation of the function y = (x + 1)2

Let us also create the graph for y = x2 using the same graphing 
technique.

y = x2

1

0

2

3

4

5

x1–1–2–3–4–5 2 3 4 5

y

(2, 4)(–2, 4)

(1, 1)(–1, –1)

(–1.5, 2.25) (1.5, 2.25)

Graphical representation of the function y = x2

When the above two graphs are superimposed onto a single graph, 
they would look like:

y = (x + 1)2

y = x2

1

0

2

3

4

5

x1–1–2–3–4–5 2 3 4 5

(–1, 0)

y

If we observe carefully, y = (x + 1)2 is a parabola with its vertex at 
(–1, 0). Its graph is similar to that of y = x2, a parabola, with vertex 
at (0, 0). Thus, knowing the graph and properties of y = x2 can help 

2

us to know the graph and properties of the function y = (x + 1)2 as 
well. Hence, y = x2 is called the parent function of all other degree 
2 polynomials, such as y = (x – 1)2 and y = (3x – 4)2. The graphs of 
both of these functions have the same shape,  however, the vertex 

the case of y = (x – 1)2 is (1, 0) and that for y = (3x – 4)2 is ( 4
3

, 0).
We can combine the graphs of these parent functions to create 

a new combined function. Let us explain this with the help of a 
combined function f(x) = xsin x.

This function is a product of the linear function x and the sine 
function sin x. First, visualise the graphs of the individual functions.

f(x
) =

 x

x

y

            

π/2 3π/2 x

y

f(x) = sin x

Graphical representation of  f(x) = x          Graphical representation of  f(x) = sin x

The sine curve oscillates between –1 and 1. However, its product 
with x will change the amplitude (the maximum height of a wave) 
of the combination function. This can be verified from the graphical 
representation of f(x) = x sin x.

x

y

f(x) = x sin x 
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Limit solves the computational challenge of instantaneous values
Let us get back to the challenge of finding the instantaneous value 
of a changing quantity and speed as an example of the same. We 
know ‘the rate of change of distance’, is speed, it offers the ‘average’ 
of the distance traversed over a period of time. The idea of ‘average’ 
is embedded in the idea of rate. The discussion eventually boils 
down to overcoming the limitation of the mathematical expression 
of average, which is the best mathematical means possible to find 
how much something changes due to the change in something else 
(such as time).  

Recall, average speed is conceptually akin to a division expression 
(average is a kind of ratio that in its standard form is best read as 
division) and divisor of (almost) zero makes the quotient skewed 
towards being disproportionately bigger. 
In the discussion on derivatives, we figured out that we can overcome  
this challenge by using the idea of an indirect quantity, a derived 
quantity, called the derivative; for example, the instantaneous value 
of speed (of something in motion), at a point, is derived from the 
way distance changes over time – the rate of change of distance 
travelled at that instant.

Conceptually this was a breakthrough, but computationally, 
finding the rate of change at an instant remained a challenge (when 
computing speed, instantaneous strictly means ‘zero’ time duration 
of the observation, and the distance traversed in that ‘zero duration’). 

For finding instantaneous speed, we cannot have ‘zero’ time 
duration a divisor. The next best thing is to make the time duration 
so small that it is non-zero but tends to be as close to zero as 
possible. We need a non-zero divisor for the computation of 
instantaneous change to be possible, but to reflect instantaneous 
values, the nonzero divisor must be the smallest possible. When 
the independent quantity is non-zero, yet approaching zero, it is 
said that ‘the limit of the quantity is zero’. This non-zero, but closest 
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possible to zero approach, where the rate of change in the value of x 
is non-zero but near zero is called the limit of a function f(x).

Now let us study an example of a curve, parabola y = x2, to see 
how we can get infinitesimal tangent on a point on the curve and 
use it to find the slope at that point on the curve.
We will find the approximate value of the slope on the point of 
interest Q (2, 4) by continuously reducing the distance between the 
two random points P and R (above and below point Q) on the curve 
to reach the closest to point Q to get the infinitesimal tangent. 

The slope of this tangent would give the slope of the curve at 
point Q.

1

1 2 3 4 5 6

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

–1 0–2–3–4–5–6

R

Q

P

(4, 16)

y = x2

(2, 4)

(0.5, 0.25)

y

x

Graph of y = x2 with points P (0.5, 0.25) and R (4, 16)

Draw a line through two random points P (0.5, 0.25) and R (4, 16) 
on the curve and calculate its slope.

Slope of PR = 0.− −
− −

2 1

2 1

y y 16 25slope = = = 4.5
x x 4 0.5

This is a rough approximate slope of the infinitesimal tangent at 
point Q.
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Similarly, take another set of points, say, P (1.9, 3.61) and 
R (2.1, 4.41), which are closer to the point Q (2, 4).

1

1 2 3 4 5 6

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

–1 0–2–3–4–5–6

R
Q

P

(2.1, 4.41)
(2, 4)

(1.9, 3.61)

y = x2

y

x

Graph of y = x2 with points P (1.9, 3.61) and R (2.1, 4.41)

Slope of PR = 
3.61− −

=
− −

2 1

2 1

y y 4.41 0.8slope = = = 4
x x 2.1 1.9 0.2

Now as we move points P and R further close [i.e., P (1.98, 3.9204) 
and R (2.02, 4.0804)] to point Q on the curve to find a better 
approximate value of the slope of tangent on point Q.
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1

1 2 3 4 5 6

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

–1 0–2–3–4–5–6

R
Q

P

(2.02, 4.0804)
(2, 4)

(1.98, 3.9204)

y = x2

y

x

Graph of y = x2 with points P (1.98, 3.9204) and R (2.02, 4.0804)

Slope of PR 0.16 4
0.04

− −
= = =

− −
2 1

2 1

y y 4.0804 3.9204slope =
x x 2.02 1.98

	

As the points P and R get closer and closer to the point of 
interest Q, the line becomes smaller and smaller while the slope of 
the line changes. When the points P, Q, and R are closest possible, 
the line becomes a tangent and the slope of this line gives the best 
approximate value of the slope of the curve at the point of interest 
(point Q). 

Another way to look at it is as follows.
y

x0

△x
△yP (x1, y1)

Q (x2, y2)

θ

Graph of slope of a curvilinear function
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As seen, the slope of a line = 
−
−

2 1

2 1

y y
x x

 

For a curve, x1 is taken very close to x2 and y1 is taken very 

close to y2. Thus,∆ −2 1x = x x
 and ∆ −2 1y = y y are very small. 

tan ∆
θ

∆
y

Also, =
x

.
 

Thus, a slope of a line can be characterised using tan θ, which is 
the angle made by the tangent to the curve at the given point and 
the horizontal axis. 

Why is the limit so-called?
The word ‘limit’ is the best descriptor of the value of the function, 
when there is the smallest change in the value of the variable, say 
x. Formally, the ‘limit of the function f as x goes to c is t’ can also 
be rephrased as ‘As x approaches c, the value of the function f gets 
arbitrarily close to t’.

In real life, when a chemical reaction between two chemicals 
takes place, a new compound is formed as time passes. So here, the 
new compound is the limit of a function as the time approaches 
infinity.
Similarly, tossing a coin gives a head or a tail. To know the probability 
of the outcome, we may flip a coin many times, making repeated 
trials. Here, as time approaches a more considerable period, the 
number of heads becomes equal to the number of tails in general. 
So, the limit of tossing a coin is the probability of getting an equal 
number of heads or tails as time approaches infinity.

Continuity solves the conceptual challenge of instantaneous values
The entire concept of limit hinges on how effective is the chosen 
infinitesimal value in detecting the rate of change or the slope of a 
function at the chosen instant. For example, while finding the best 
approximate value of the slope of f(x) = x2 at the point Q (2, 4), the 
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points P and R are moved as close as possible to Q. The reliability of 
the computed rate of change at an instant, is measured in terms of 
how consistent is the value of the rate, i.e., how close are the slopes 
of the tangent at P and tangent at R.

Q
R

P

y

x0 x

f(x)

The slope of the function f(x) at point Q

One of the more obvious ways and means of seeking consistency 
is to look for the values of the rate at instants very close to the 
chosen instant. It is easily appreciable that the consistency of the 
rate of change of a function would be considered higher if at the 
two instants around the chosen instant – before and after – the 
computed values of the rate (before and after) are the same as the 
rate value at the chosen instant.
Thus, the infinitesimal value should be such that it can detect sharp 
variations in the values of the rate, closest to the point of interest 
(for finding an instantaneous value). The chances of capturing 
any sharp variation increase as the infinitesimal becomes smaller 
(and comes closest to the value of the instant). Any detected sharp 
variation declares a lack of continuity at that point.

Continuity is an important consideration for finding derivatives, 
it helps to know if a function may not have a derivative at an instant 
(non-continuous functions do not have derivatives, we can know 
this without having to attempt a computation of the derivative), but 
it is not a necessary condition for computing the non-derivative 
value of a function over a range.
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A digital recording of a song is an example of a continuous 
function. The digital recorder records tiny bits of sounds several 
times a second which may provide sufficient data for a computer to 
replicate the singer’s overall performance while singing.
The growth of nails in human hands and feet is another example 
of continuous function. The nails grow at an average rate of 3.47 
millimetres (mm) per month, or about a tenth of a millimetre per 
day. It grows and slides along the nail bed (the flat surface under 
the nails), giving strength to the nail. This process continues until 
the death of a human being. However, some factors that affect this 
continuous growth of function are age, location, season, hormones, 
health, etc.

Ascertaining continuity at a point
Let us graphically see how important is the choice of infinitesimal 
in appreciating the concept of continuity of a function (as evident 
from its curve) at a point. For a function to be continuous at a point, 
it is obvious that the slope of the tangents on the points just before 
and after the point of interest is nearly the same. 

Take any random point on the curve y = x2, say, P (0.5, 0.25) and 
R (3.5, 12.25) below and above the point of interest (point Q), and 
join points PQ and QR.

1

1 2 3 4

2

3

4

5

6

7

8

9

10

11

12

13

–1 0–2–3–4

R

Q

P

(3.5, 12.25)

(2, 4)

(0.5, 0.25)

y = x2

y

x

Graph of y = x2 with points P (0.5, 0.25) and R (3.5, 12.25)
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Slope of PQ = 0.− −
− −

2 1

2 1

y y 4 25 3.75slope = = = = 2.5
x x 2 0.5 1.5

Slope of QR = 4
2

− −
− −

2 1

2 1

y y 12.25 8.25slope = = = = 5.5
x x 3.5 1.5

Now we move points P and R closer to point Q to calculate a better 
approximate value of the slope of the curve at Q. Let us choose 
P (1, 1) and R (3, 9), which are closer to Q (2, 4).

1

1 2 3 4

2

3

4

5

6

7

8

9

10

11

12

–1 0–2–3–4

R

Q

P

(3, 9)

(2, 4)

(1, 1)

y = x2

y

x

Graph of y = x2 with points P (1, 1) and R (3, 9)

Slope of PQ = − −
− −

2 1

2 1

y y 4 1 3= = = 3
x x 2 1 1

        

Slope of QR = 4
2

− −
− −

2 1

2 1

y y 9slope = = = 5
x x 3

        

Similarly, take another set of points, say, P (1.8, 3.24) and 
R (2.2, 4.84), which are further closer to point Q (2, 4).
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1

1 2 3 4
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12

13

–1 0–2–3–4

R
Q

P

(2.2, 4.84)
(2, 4)

(1.8, 3.24)

y = x2

y

Graph of y = x2 with points P (1.8, 3.24) and R (2.2, 4.84)

Slope of PQ = 3.24
1.8

− −
− −

2 1

2 1

y y 4 0.76slope = = = = 3.8
x x 2 0.2

       

Slope of QR = 4
2

− −
− −

2 1

2 1

y y 4.84 0.84slope = = = = 4.2
x x 2.2 0.2

Now moving very close to Q, take points P (1.95, 3.8025) and 
R (2.05, 4.2025).
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–1 0–2–3–4
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Q

P

(2.05, 4.2025)
(2, 4)

(1.95, 3.8025)

y = x2

y

x

Graph of y = x2 with points P (1.95, 3.8025) and R (2.05, 4.2025)
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Slope of PQ = − −
− −

2 1

2 1

y y 4 3.8025 0.1975= = = 3.95
x x 2 1.95 0.05

Slope of QR = 
− −
− −

2 1

2 1

y y 4.2025 4 0.2025Slope of QR = = = = 4.05
x x 2.05 2 0.05

As points P and R get closer and closer to the chosen point, Q, the 
lines PQ and QR will coincide, eventually forming a tangent at 
point Q. The closer the points P and R are near the chosen point 
of interest Q, the closer are the values of the slopes at these points, 
suggesting a continuous function.

Other examples of continuous change beyond motion 
Average or indicative rate of reaction is an important characteristic 
of chemical reactions. It is an essential parameter in large-scale 
manufacturing of chemicals, drugs, and household chemicals. For 
instance, knowing the rate at which products are being made and the 
bottlenecks (which may mostly be due to the lower-than-anticipated 
speed of reactions) production process can be fine-tuned. 

For a chemical reaction, the change in concentration of reactants 
or product per unit time (such as second, minute, or hour) over a 
given period of time is called the average rate of reaction. And in 
a reaction, the rate of change of concentration of the reactants or 
products at a particular instant of time is the instantaneous rate of 
that reaction at a specific instant of time. 

An interesting feature of the rate of reaction is that it continuously 
changes during every reaction – it depends upon the residual 
concentration of the reactants (which decreases with each passing 
instant of the reaction). A reaction never proceeds at the average 
rate of reaction. To really understand a chemical reaction, we need 
to go beyond the average rate of reaction.

Stock market intraday-trading involves traders buying and selling 
financial instruments based on fluctuating prices on the same day. 
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The trader makes a profit or loss based on the instantaneous stock 
price. This signifies a continuous process.

Whereas, in long-term investment, we look at the average of the 
stock prices and then invest in those stocks, which gives a good 
average return

Average share price
Number of share

=
Total cost of the shares purchased

Simple and compound interest rates are a matter of common 
knowledge (if not understanding) and experience that we could 
easily extend to broaden the appreciation of the difference between 
the basic idea/concept of average and instantaneous values of 
quantities that frequently or continuously change in time or space 
(i.e., change with change in position). It may also be added that 
when we talk about the ‘real world change,’ it implies that we cannot 
completely predict the change.

Simple interest rates are kind of ‘average’ of interest rates. The same 
flat interest rate will be applied for computing the interest amount 
on a principal over a period of time. The interest is assumed to be 
the same amount every day in that period. On the other hand, the 
compound interest rate resembles the idea of instantaneous interest 
amount – which varies by the day, week, month, or whatever period 
of compounding – over the deposit period. 
This is to bring out that the instantaneous value of the interest 
amounts would behave differently under simple and compound 
interest situations.

This chapter is excerpted from `Calculus for Professionals,' Volume I, 
co-authored by Sandeep Srivastava and Dr Garima V Arora. 
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Notes on slope, continuous quantities and differential equations

Note 1 Slope is important 

The slope gives the following information about a function:
•	 Steepness of a function.
•	 Direction of change of the curved line.
•	 The slope describes the degree of sensitivity of the dependent 

variable (y) on the independent variable (x) for a function 
y = f(x), i.e., the quantum of change in y due to infinitesimal 
change in the x. For example, a slope of 4 at a point means the 
y-axis will grow 4 times the (small) change in the x-axis.

•	 The slope of the function helps us compare any set of functions 
to know if they are parallel, perpendicular, or converging and the 
rate of convergence.

•	 The maximum and minimum value of a function – local (within 
a limited range of the variables) or global (over the entire range 
of values).

•	 The slope can be used to find whether the function increases 
or decreases after the location of the point of maxima or the 
minima. Indeed, the most important characteristic of non-linear 
functions is their slope.

Note 2  Nature of the graphs and slopes of the functions

Calculus is constructed on functions; a familiarity with the nature 
of the graphs of functions is required for understanding calculus. 
The graphs of the functions may be increasing or decreasing. They 
may be flat or may not even exist. They may occur with breaks or no 
breaks. This information about the nature of the graph speaks about 
the slope of the curve at various points.
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Increasing
Increasing

Decreasing Break

Flat (Constant)

-1-1 1

1

2

3

4

2 3 4 5 6 7 8 9-2-3

-2

-3

Nature of the graphs - Increasing, decreasing, break, flat
The instantaneous value of (constantly) changing quantities can only 
be found through the knowledge of the rate of change at all instants. 
The slope is the way to find the rate of change of the function, i.e., it 
describes how rapidly the outcome of a function changes with a unit 
change in its input(s) at various points in its domain. It tells about 
the steepness and direction of the lines and curves. Graphically, the 
rate of change is the slope.

    
0

y

x

y2

5

y1

x1 x2 5x0

y0

                            0 2

y

x

y2

y1

x1x2x0

y0

4

                
 Graph of uniform rate of change         Graph of non-uniform rate of change

Mathematically, the rate of change is the ratio of the change in the 
value of the function y, or f(x) due to a corresponding change in the 
value of x.

Rate of change = y
x

∆
∆

 = ( )
( )

−
−

1 0

1 0

y y
x x

   

Constant slope of a linear function
It is easy to find the rate of change (or slope) of linear function, 
where the rate of change is constant. 
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Let (x1, y1) be the point where the slope of the line is to be 
determined. Let us take any random point (x2, y2) on the same line.

Then, the slope of the straight line is given by

Slope, −∆
∆ −

2 1

2 1

y   ychange in y yslope, m = = =
change in x x x   x

y

x

(x2, y2)

(x1, y1)

0

△x = (x2 – x1)

△y = (y2 – y1)
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Graphical representation of a straight line
Now, let us consider the four cases mentioned below:

Case Graph Slope
Case I 
Consider a 
line joining 
the points 
(3, 4) and 
(–3, –2).

y

x0 1

1

–1
–1

–2

–2

–3

–3

–4–5 2

2

3

3

4

4

5

5

(3, 4)

(–3, –2)

An increasing function 
describes a positive 
slope.

− −
− −

4 ( 2)m = = 1
3 ( 3)

Case II
Consider a 
line joining 
the points 
(0, 4) and 
(2, 1).

y

x0 1

1

–1
–1

–2–3 2

2

(0, 4)

(2, 1)

3

3

4

4

5

5
A decreasing function 
describes a negative 
slope.

1 4 3m = =
2 0 2
− −
−

Case III 
Consider a 
vertical line 
x = 2.

y

x0 1

1

–1
–1

–2

–2

–3 2

2

(2, 1)

(2, –2)

(2, 3)

x = 2

3

3

4

4

5

A vertical line describes 
an undefined slope. 

−
= = ∞

−
3  1 2m =
2  2 0

Case IV
Consider a 
line joining 
the points 
(0, 3) and 
(2, 3).

y

x0 1

1

–1
–1

–2–3–4 2

2

(0, 3)

(2, 3)

3

3

4

4

5
A horizontal line 
describes zero slope.

3 3
m = = 0

2 0
−
−

From above inferences, we can say that the slope (or rate of change) 
of a linear function is always constant.  
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Varying slopes of a curvilinear function
The slope (or the rate of change) of the curvilinear function is 
not constant and keeps changing along the points on the curve. A 
tangent at a point on a curve is a straight line that best approximates 
the slope of the curve near that point. 

y

x

P

Q

R

Time

D
is

ta
nc

e

0

Tangents at various points on the curve

Tangent best approximates the slope of curve
Let us see for ourselves how the slope of a curve at a point is best 
approximated by the tangent at that point (there can be only one 
tangent at a point on a curve). 

We start with an ellipse with tangent PR at the point Q. From the 
image (i), it is not evident that the slope of PR is the same as the 
slope of the ellipse at point Q. 

On enlarging the image and reducing the tangent PR (image ii) 
and we still cannot see the relationship between the slopes of PR 
and the ellipse at Q.

We further reduce the size of the tangent, and enlarge the 
diagram to view the relationship between the tangent and the 
curve of the ellipse.
               P

Q
R

P
Q

R
 P

Q
R  

Image (i)                     Image (ii)                    Image (iii) 
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Interestingly, as we keep enlarging the image and reducing the size 
of the tangent to know the preciseness of the slope of the curve at 
point Q, we will notice that a very small area of the curve (or a point) 
coincides with the tangent.     

P
Q

R          P Q R

As we have already discussed, it is easy to calculate the slope of a 
straight line. To find the slope of a curve at a specific point, we find 
the slope of the tangent line at that specific point, it provides the 
best approximation. In the diagram, the slope of the tangent PR is 
the best approximate value of the slope of the elliptical curve at Q, 
as the tangent PR coincides with the curve at Q. 

Characterisations of slope for a curve

Graph Slope
y

x0

x

yA

•	 The tangent to the 
curve at the point A 
is tending upwards 
when moving from 
left to right, which 
is a property of 
increasing functions 
– positive slope.

•	 The tangent at A 
makes an acute angle 
with the horizontal. 

y

x0

x
y

B

•	 The tangent to the 
curve at the point B 
is tending downwards 
when moving from 
left to right, which is a 
property of decreasing 
functions – Negative 
slope.

•	 The tangent at B makes 
an obtuse angle with 
the horizontal. 
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y

x0

C

'C   ''C ''C

'C ''C

•	 As we move from C’ 
to C and C to C’’ with 
an increase in x, the 
value of the function 
remains the same. 

•	 The rate of change 
in both cases being 
0. Thus, a horizontal 
tangent has slope 0.

 

y

x0

C
'C

  ''C

 ''C

'C

''C

  

•	 As we move from C’ 
to C and C to C’’, the 
value of the function 
increases for the same 
value of x. 

•	 The slope is not 
defined for a vertical 
tangent on the curve 
at a point.

Note 3  The nature of input and output

Nature of input 
The nature of input effects the nature of output. Let us explore 
how input values for a function may be different.

There is a world of things and situations that are quantified 
through the act of counting, and a world that is quantified 
through the act of measurement. The marks obtained by a 
student in an exam is quantified by the evaluator by first 
counting the marks obtained in individual questions and then 
adding them all up, whereas the weight of students in a class 
is quantified by measuring the weight of individual student 
on a weighing scale. Recall, functions take some kind of 
quantities as inputs and produce some other, or similar kind of 
quantities as output, which could be obtained by counting, or 
by measurement.
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The nature of quantities obtained by counting is what we call 
as discrete. For example, marks obtained by a grade X student 
in all subjects in a school have discrete values, graphically 
seen as follows.
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Graphical representation of discrete quantities

Discrete does not necessarily mean integer value, it only means 
that the possible values are definite and known; for example, 
the marks in a subject could well be 85.5, 85.25 or 85.75, but 
hardly 85.55.

The nature of quantities obtained by measurement/computation 
is typically what we call continuous, expressed using real numbers. 
Continuous quantities can take any value in an interval. For 
example, the aggregate percentage value is technically discrete 
because aggregate percentages are calculated by dividing the 
marks obtained by the total marks, which itself are discrete. 
However, percentage data is often treated as continuous for the 
reason that it can take any value from 0 to 100%.

 Thus, input values could be discrete or continuous, depending 
on how they originate – out of counting, measurement, or 
arithmetical computing.

Discrete or continuous function – The nature of output
The nature of output could also be discrete or continuous. The 
effect of the function on the nature of outcome is obvious; 
for example, f(x) = x2 accepts inputs as negative and positive 
numbers but the outputs are only positive.
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Let us take a function f(x) = x2 and take different values to 
know how this function behaves.

When input values are taken as discrete, say, –2, –1, 0, 
1, ..., the nature of output is also discrete and it is 4, 1, 0, 1, …, 
corresponding to the input values in the given function.

f(x) = x2

(–2, 4) (2, 4)

(1, 1)(–1, 1)

Domain: Integers
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Graphical representation of function for discrete input values

On the other hand, when the domain is an interval (say [–2, 2]), 
the output or the range is also an interval (here [0, 4]) and takes 
every value between –2 and 2, and hence continuous.

f(x) = x2

Domain: Real numbers
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Graphical representation of function for continuous input values

Thus, for a different domain of input values, the same function 
f(x) = x2 will have a different range of the output values.

The nature of output depends on the nature of input and the 
nature of the function (i.e., the kind of ‘processing’). 
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The idea of a function being continuous is especially 
important in calculus.
Note 4  Mathematical expressions using derivative (Differential 

equations)
Recall that algebraic expressions are combinations of constants 
and variables which are put together using mathematical symbols 
and algebraic equations are expressions that are set equal to zero. 
It is indeed fascinating to consider that equations can incorporate 
changing conditions and the rate of change through the use of 
derivatives and rates of change. Such equations are common, 
they are mathematical tools used for modelling and analysing 
everyday situations and scientific conditions that involve change 
and relationships between variables. These ‘derivative equations’ are 
mathematical termed as ‘differential equations’. 

Do not be startled if we say that the idea and application of 
‘differential equations’ is a primitive biological, animal instinct and 
ability. We are adept at using differential equations intuitively. 

For starters, in a race, gauging and reacting in the heat of the 
moment to the increasing or decreasing distances between the 
runners as things change dynamically involves using the brain’s 
raw/god-gifted logical abilities and spontaneous calculations. What 
we do intuitively, formal mathematical modelling of the situation 
would involve calculus! The conscious and engaging assessment 
and extra push mid-air when jumping across a ditch ensures that 
the jump is successful. Again, a mathematical modelling of decision 
making in the situation would be based on the derivative (rate of 
jump) and anti-derivative (the extent of jump). 

Wherever there are changing quantities in the ‘equation’ of thing, 
the situation is mathematically expressed as differential equations. 
These equations can be used to configure everyday life to rocket 
science. The laws of nature and dynamism in science and maths can 
easily be explained through differential equations. Think of the way 
we go across a busy road – constantly juggling with the estimated 
speed of the vehicle (rate of approach), the closing distance between 
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the fast-approaching vehicles and the person crossing the road, the 
distance left to cross the road, speed of the person crossing the road, 
as well as the obstructions on the way (the other people crossing the 
road from the opposite direction, for instance); it is a fairly complex 
situation of changing dimensions, but most of us have gotten it right 
every time.
Some examples of differential equations in real life:
•	 Any change in human body temperature is a response to 

changing conditions outside and within the body, such as 
ambient temperature, the type of food eaten, the type of clothes 
worn, the type of activity performed at that particular time (for 
example, exercising would increase the heart pumping and 
blood circulation rate, thereby increasing the temperature), and 
more. So, ‘in the equation’, the temperature of a human body 
responds to various changing conditions underlying it.

•	 For calculating the time required to drain a tank full of fluid, 
differential equation comes into play. Draining time depends 
on various factors like the volume of fluid, the air pressure, the 
height of the tank, the density of the fluid, the rate of flow, the size 
of a draining hole, and more. Any change in the above factors 
may impact the time taken to drain the tank. For example, if 
water and petroleum are put in two similar tanks, the time taken 
to drain them would differ due to the difference in their density. 
Similarly, if the size of the draining hole is small, it would impact 
the time taken to drain the fluid. ‘In equation terms’, factors like 
the size of the hole and height of a tank are constant terms for 
a specific tank for all fluids, while density, the volume of fluid, 
and air pressure are differentiated with time to estimate the time 
taken to drain the fluid.

•	 The value of the National income of a country is dependent 
on various factors like general price level, aggregate demand, 
aggregate supply, compensation to employees, saving rate, 
government policy, and more. These factors depend on the 
inflation rate, total production of goods and services, wage 
rate, marginal propensity to consume, etc. All the factors are 
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interlinked and dynamic in nature. For example, the general 
price level of a country increases due to an increase in the 
inflation rate, which may change due to government policy or a 
change in supply. ‘In equation term’, compensation of employees 
and saving rate are constant terms for a period while general 
price level, aggregate demand, and supply are differentiated 
with time to know the value of national income.

•	 The differential equation is used in a video game to determine 
the rate of motion of an object. For example, consider the static 
force diagram for a ball rolling down a ramp. Knowing the time 
duration in which it will roll down depends on various factors 
like gravity vector, mass of the ball, and the angle of the ramp 
(its normal vector).These factors are further dependent upon 
the net force applied on the ball and the acceleration of the ball 
in that frame. So, ‘in equation terms’, the mass of the ball and 
gravity vector is considered constant, while other factors are 
variable and differentiated with respect to time.

An interesting aspect of differential equations is that unlike algebraic 
equations and the math we know, the ‘solution’ of differential 
equations is not a quantity (or a set of quantities) but another 
function. Such a solution might be expected because when we deal 
with derivatives, we essentially deal with functions. It means that 
differential equations give us a ‘modelled’ behaviour of things, not a 
particular instance of behaviour. And there is often a set of solutions 
for a given differential equation.

A few famous equations in physics which depict the rate of 
change are:

Force = Mass × Rate of change of velocity 
Power = Voltage × Rate of change of charge
Momentum = Mass × Rate of change of distance
The conceptual exploration of derivative (and the related idea of 	

     ‘anti-derivative and derivative equation’) concludes here.
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It’s Your Convenience World, finally
This is for real, for once

“Welcome to the New World Order – the IYCWorld (it’s-
your-convenience-world). The power to choose yourself and 
engage in your chosen socio-economic proclivities, around 
the world, at the click of a mouse is a force that will transform 
your life like nothing before. And your choice will be your 
limit in the skyless e-universe. IYCWorld is only as good as 
you demand it to be ... try as they might, the local socio-
economic dimensions cannot stop your will and convenience 
to rule.”

–  Sandeep Srivastava, 2001

This is an excerpt from the 2001 book ‘Embracing the Net,’ 
published by FT.com (Pearson, UK,) co-authored by Soumitra 
Dutta, currently Dean Said Business School, University of Oxford, 
and Sandeep Srivastava. The extract was the stated overarching 
vision and strategic direction for the digital economy in the Third 
Industrial Revolution (3IR), post the 2000 dot-com bust. 

Twenty-three years later, and a decade in the Fourth Industrial 
Revolution, 4IR, the vision and strategic prescription is just as valid 
and robust, literally nothing even to be tweaked. Indeed, we have 
come a long way in the right direction, the emergence of the 4IR as 
the hard-infrastructure for Society 5.0 is just the needed ‘physical 
enabler’. However, we are far too away from transformations  on 
the ground.
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It is not too hard to locate why we are still as long a way from 
Society 5.0, in Japan as much as in every nation of the world – the 
complementing soft-infrastructure of the 4IR is missing in action. 
A vast majority of the educated adults of our times cannot harness 
4IR, and it is turning for the worse. Education – the technology of 
raising best-potential adults out of every child – has turned out to 
be the intractable complication for all of humankind. 

However, mathematisation of mathematics education is a 
masterstroke for ushering in an educational renaissance. For, 
learning mathematics is peerlessly personalisable and most 
objectively evaluable. Besides, mathematics is the easiest 
domain of knowledge to learn; every one of us is born with all 
the mathematical logic that is there is to be discovered, waiting 
to decipher the order in the nature. Success in mathematics 
education is the only first step way to kick start the larger 
educational reformation, and we can go on. 

Above all, ‘Cent Percent Mathematics’ is no more than 50 hours 
of conversation for the entire K-12 curricula. And language is 
no barrier. Cent Percent Mathematics is all in public domain, 
the evidence of which are the two case studies. Mathematics-led 
educational revolution is real now, ready to more than complement 
4IR and set off a virtuous cycle of growing economic dignity to 
every one of us.

Be ready to play your part, in mathematising your own mathematics, 
and experience economic miracles for self, family, and community.   



It is essential to realize that science does not offer a complete knowledge 
of the mind, although we do experience its mystery and enormous 
energy. However, it is clear that energy is a vital prerequisite for 
performing mechanical work. 

The mental processes of the mind are essential for performing 
creative, innovative work, the difference lies in how people utilize the 
power of their mind. Everyone knows the saying that “an empty mind 
is Devil's workshop," so without a meaningful purpose, people might 
spend their mental energies on destructive work. On the other hand, 
mental energy can be utilized for creative or innovative work as well 
as improving quality of life. 

A mathematised mind is highly predisposed towards seeking and 
seeing order in all things around.
	 – Ramjee Prasad, 2012
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