mathematics
 Ace 'Al \& Industry 4.0 Era' Amplify Your AIQ \& Wealth

Uses AERO, or, US ‘Common Core Plus' Mathematics Curriculum, for the overall academic planning.

The choice of AERO is to ensure progressive integrity of MATHEMATICAL THINKING in the lessons.

However, the lesson content shall be based the unique ' $\mathrm{A}-\mathrm{Z}$ ' Mathematics that we have authored.
'A - Z ' Mathematics is THE FIRST-EVER mathematics learning resource that is threaded by MATHEMATICAL LOGIC.
The very conception and creation of 'A - Z' Mathematics implied truly 100% Mathematics, that mathematises thinking.

The combining of the curricular detailing of mathematics by AERO, and the visualisation and verbalisation of 'A - Z' Mathematics, is the magic, awaited for 200 years.

CURRICULUM FRAMEWORK FOR MATH

Abstract

About AERO American Education Reaches Out (AERO) is a project supported by the United States Department of Education's Office of Overseas Schools, which establishes an implementation framework for international American schools which offer a standards-based U.S. curriculum.

Aligned with Common Core standards and Next Generation Science Standards, AERO is considered to be "Common Core Plus," providing an "enduring understanding, essential questions and learning progression."

\section*{Why US Common Core Mathematics?}

It is one of the best curriculum for learning MATHEMATICAL THINKING. That is, to MATHEMATISE THINKING. In these times of ever-sharpening Artificial (General) Intelligence, mathematised thinking is the only way to be successful. The typical rote, methodised, logic-less mathematics is of no value.

This-eurficulumt-will alse-empower-fethtatien-for-suteess-in-ALL-Scheol-System-Curficulat-glebally

The Background

One of the primary reasons, for poor mathematics education, is the lack of distinction, between mathematics content (largely methods, and practice), and mathematical thinking. This ambiguity, is also reflected, in assessment, and in evaluation.

The education system assumes, that teaching mathematics compulsorily, is enough, by itself, to develop mathematical thinking.

But, why content, and thinking, are different? That is, why the methods, and ceaseless practice, in mathematics education, does not promote mathematised mind.

For, the content does not focus on logic, process, reasoning, and the history of relevant mathematical concepts.
Briefly, mathematical thinking is not, thinking about the subject matter of mathematics, but, a way of looking, at situations, and conditions. It is critical for success in all academic 'subjects.'

AERO Mathematics Standards for High School

The high school standards specify the mathematics that all students should study in order to be college and career ready. Additional mathematics that students should learn in order to take advanced courses such as calculus, advanced statistics, or discrete mathematics is indicated by (+), as in this example: (+) Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers).

All standards without a (+) symbol should be in the common mathematics curriculum for all college and career ready students. Standards with a (+) symbol may also appear in courses intended for all students.

The high school standards are listed in conceptual categories:

- Number and Quantity
- Algebra
- Functions
- Modeling
- Geometry
- Statistics and Probability

Conceptual categories portray a coherent view of high school mathematics; a student's work with functions, for example, crosses a number of traditional course boundaries, potentially up through and including calculus.

Modeling is best interpreted not as a collection of isolated topics but in relation to other standards. Making mathematical models is a Standard for Mathematical Practice, and specific modeling standards appear throughout the high school standards indicated by a star symbol (${ }^{\star}$). The star symbol sometimes appears on the heading for a group of standards; in that case, it should be understood to apply to all standards in that group.

HS Conceptual Category: Number and Quantity

Numbers and Number Systems. During the years from kindergarten to eighth grade, students must repeatedly extend their conception of number. At first, number" means "counting number": $1,2,3 \ldots$ Soon after that, 0 is used to represent "none" and the whole numbers are formed by the counting numbers together with zero. The next extension is fractions. At first, fractions are barely numbers and tied strongly to pictorial representations. Yet by the time students understand division of fractions, they have a strong concept of fractions as numbers and have connected them, via their decimal representations, with the base-ten system used to represent the whole numbers. During middle school, fractions are augmented by negative fractions to form the rational numbers. In Grade 8, students extend this system once more, augmenting the rational numbers with the irrational numbers to form the real numbers. In high school, students will be exposed to yet another extension of number, when the real numbers are augmented by the imaginary numbers to form the complex numbers. Wi th each extension of number, the meanings of addition, subtraction, multiplication, and division are extended. In each new number system-integers, rational numbers, real numbers, and complex numbers - the four operations stay the same in two important ways: They have the commutative, associative, and distributive properties and their new meanings are consistent with their previous meanings. Extending the properties of whole-number exponents leads to new and productive notation. For example, properties of whole-number exponents suggest that ($51 / 3) 3$ should be $5(1 / 3) 3=51=5$ and that $51 / 3$ should be the cube root of 5 . Calculators, spreadsheets, and computer algebra systems can provide ways for students to become better acquainted with these new number systems and their notation. They can be used to generate data for numerical experiments, to help understand the workings of matrix, vector, and complex number algebra, and to experiment with non-integer exponents.

Quantities. In real world problems, the answers are usually not numbers but quantities: numbers with units, which involves measurement. In their work in measurement up through Grade 8, students primarily measure commonly used attributes such as length, area, and volume. In high school, students encounter a wider variety of units in modeling, e.g., acceleration, currency conversions, derived quantities such as person-hours and heating degree days, social science rates such as per-capita income, and rates in everyday life such as points scored per game or batting averages. They also encounter novel situations in which they themselves must conceive the attributes of interest. For example, to find a good measure of overall highway safety, they might propose measures such as fatalities per year, fatalities per year per driver, or fatalities per vehicle-mile traveled. Such a conceptual process is sometimes called quantification. Quantification is important for science, as when surface area suddenly "stands out" as an important variable in evaporation.
Quantification is also important for companies, which must conceptualize relevant attributes and create or choose suitable measures for them.

Domains	The Real Number System HSN-RN	Quantities \star HSN -Q	The Complex Number System HSN - CN	Vector and Matrix Quantities HSN -VM
Clusters	Extend the properties of exponents to rational exponents	Reason quantitatively and use units to solve problems	Perform arithmetic operations with complex Numbers	Represent and model with vector quantities.
	Use properties of rational and irrational numbers.	Represent complex numbers and their operations on the complex plane Use complex numbers in polynomial identities and equations	Perform operations on vectors.	Perform operations on matrices and use matrices in applications.

Domains	The Real Number System HSN- RN	Quantitiest HSN -Q	The Complex Number System HSN -CN	Vector and Matrix Quantities HSN - VM		
Clusters/	Extend the properties of exponents to rational exponents	Reason quantitatively and use units to solve problems	Perform arithmetic operations with complex numbers	Represent and model with vector quantities		
	AERO.HSN-RN. 1 DOK 1,2 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $51 / 3$ to be the cube root of 5 because we want $(51 / 3) 3=5(1 / 3) 3$ to hold, so (51/3)3 must equal 5 .	AERO HSN-Q. 1. DOK 1,2 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	AERO HSN.CN. 1 DOK 1 1. Know there is a complex number i such that $i 2=-1$, and every complex number has the form $a+b i$ with a and b real.	AERO. HSN.VM. 1. (+) DOK 1 Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., $v,\|v\|,\\|v\\|, v$).		
		AERO HSN-Q. 2 DOK 1,2 Define appropriate quantities for the purpose of descriptive modeling.	AERO HSN.CN. $2 \quad$ DOK 1 Use the relation $i^{2}=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	AERO. HSN.VM. 2. (+) DOK 1 Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.		
		AERO HSN-Q. 3 DOK 1,2 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities	AERO. HSN.CN. 3. (+) DOK 1 Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.	AERO. HSN.VM. 3. (+) DOK 1,2 Solve problems involving velocity and other quantities that can be represented by vectors.		

Domains	The Real Number System HSN- RN	Quantities* HSN -Q	The Complex Number System HSN - CN	Vector and Matrix Quantities HSN VM		
Clusters/ Standards	Extend the properties of exponents to rational exponents AERO. HSN-RN. 2 DOK 1 Rewrite expressions involving radicals and rational exponents using the properties of exponents. Use properties of rational and irrational numbers.		Represent complex numbers and their operations on the complex plane. AERO.HSN.CN.4. (+) DOK 1,2 Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.	Perform operations on vectors. AERO. HSN.VM. 4. (+) DOK 1,2 Add and subtract vectors. a. Add vectors end-to-end, component- wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes. b. Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum. c. Understand vector subtraction $v-w$ as $v+(-w)$, where $-w$ is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.		
	AERO.HSN-RN. 3 OK 1,2 Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.		AERO.HSN.CN.5. (+) DOK 1,2 Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, $(-1+\sqrt{ } 3$ i $) 3=8$ because $(-1$ $+\sqrt{ } 3$ i) has modulus 2 and argument 120°.	AERO. HSN.VM. 5. (+) DOK 1,2 Multiply a vector by a scalar. a. Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise b. Compute the magnitude of a scalar multiple $c v$ using $\\|c v\\|=\|c\| v$. Compute the direction of $c v$ knowing that when $\|c\| v \neq 0$, the direction of $c v$ is either along v (for $c>0$) or against $v($ for $c<0)$.		
			AERO.HSN.CN.6. (+) \quad DOK 1 Calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers at its endpoints.			

Domains	The Real Number System HSN- RN	Quantitiest HSN -Q	The Complex Number System HSN - CN	Vector and Matrix Quantities HSN VM
Clusters/ Standards			Use complex numbers in polynomial identities and equations. AERO.HSN.CN. 7. Solve quadratic equations with real coefficients that have complex solutions.	Perform operations on matrices and use matrices in applications AERO. HSN.VM. 6. (+) DOK 1,2 Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.
			AERO.HSN.CN.8. $(+) \quad$ DOK 1,2 Extend polynomial identities to the complex numbers. For example, rewrite $x^{2}+4$ as $(x+$ $2 i)(x-2 i)$.	AERO. HSN.VM. 7. (+) \quad DOK 1 Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled.
			AERO.HSN.CN.9. (+) DOK 1,2 Know the Fundamental Theorem of Algebra; show then Know the Fundamental show that it is true for quadratic polynomials.	AERO. HSN.VM. 8. (+) \quad DOK 1 Add, subtract, and multiply matrices of appropriate dimensions.
				AERO. HSN.VM. 9. (+) DOK 1 Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.
				AERO. HSN.VM. 10. (+) DOK 1 Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.

Domains	The Real Number System HSN- RN	Quantities \% HSN -Q	The Complex Number System HSN - CN	Vector and Matrix Quantities HSN VM
Clusters/ Standards				AERO. HSN.VM. 11. (+) DOK 1,2 Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector. Work with matrices as transformations of vectors.
Standards				AERO. HSN.VM. 12. (+) \quad DOK 1,2 Work with 2×2 matrices as transformations of the plane, and interpret the absolute value of the determinant in terms of area

HS Conceptual Category: Algebra

Expressions. An expression is a record of a computation with numbers, symbols that represent numbers, arithmetic operations, exponentiation, and, at more advanced levels, the operation of evaluating a function. Conventions about the use of parentheses and the order of operations assure that each expression is unambiguous. Creating an expression that describes a computation involving a general quantity requires the ability to express the computation in general terms, abstracting from specific instances. Reading an expression with comprehension involves analysis of its underlying structure. This may suggest a different but equivalent way of writing the expression that exhibits some different aspect of its meaning. For example, p $+0.05 p$ can be interpreted as the addition of a 5% tax to a price p. Rewriting $p+0.05 p$ as 1.05 pshows that adding a tax is the same as multiplying the price by a constant factor. Algebraic manipulations are governed by the properties of operations and exponents, and the conventions of algebraic notation. At times, an expression is the result of applying operations to simpler expressions. For example, $p+0.05$ p is the sum of the simpler expressions p and 0.05 p. Viewing an expression as the result of operation on simpler expressions can sometimes clarify its underlying structure. A spreadsheet or a computer algebra system (CAS) can be used to experiment with algebraic expressions, perform complicated algebraic manipulations, and understand how algebraic manipulations behave.

Equations and inequalities. An equation is a statement of equality between two expressions, often viewed as a question asking for which values of the variables the expressions on either side are in fact equal. These values are the solutions to the equation. An identity, in contrast, is true for all values of the variables; identities are often developed by rewriting an expression in an equivalent form. The solutions of an equation in one variable form a set of numbers; the solutions of an equation in two variables form a set of ordered pairs of numbers, which can be plotted in the coordinate plane. Two or more equations and/or inequalities form a system. A solution for such a system must satisfy every equation and inequality in the system. An equation can often be solved by successively deducing from it one or more simpler equations. For example, one can add the same constant to both sides without changing the solutions, but squaring both sides might lead to extraneous solutions. Strategic competence in solving includes looking ahead for productive manipulations and anticipating the nature and number of solutions. Some equations have no solutions in a given number system, but have a solution in a larger sy stem. For example, the solution of $x+1=0$ is an integer, not a whole number; the solution of $2 x+1=0$ is a rational number, not an integer; the solutions of $x 2-2=0$ are real numbers, not rational numbers; and the solutions of $\mathrm{x} 2+2=0$ are complex numbers, not real numbers. The same solution techniques used to solve equations can be used to rearrange formulas. For example, the formula for the area of a trapezoid, $\mathrm{A}=((\mathrm{b} 1+\mathrm{b} 2) / 2) \mathrm{h}$, can be solved for h using the same deductive process. Inequalities can be solved by reasoning about the properties of inequality. Many, but not all, of the properties of equality continue to hold for inequalities and can be useful in solving them.

Connections to Functions and Modeling. Expressions can define functions, and equivalent expressions define the same function. Asking when two functions have the same value for the same input leads to an equation; graphing the two functions allows for finding approximate solutions of the equation. Converting a verbal description to an equation, inequality, or system of these is an essential skill in modeling.

Domains	Seeing Structure in Expressions HSA.SSE	Arithmetic with Polynomials and Rational Expressions HSAAPR	Creating Equations HSA.CED	Reasoning with Equations and Inequalities HSA.REI
Clusters	Interpret the structure of expressions Write expressions in equivalent forms to solve problems	Perform arithmetic operations on polynomials Understand the relationship between zeros and factors of polynomials Use polynomial identities to solve problems Rewrite rational expressions	Create equations that describe numbers or relationships	Understand solving equations as a process of reasoning and explain the reasoning Solve equations and inequalities in one variable Solve systems of equations Represent and solve equations and inequalities graphically

Domains	Seeing Structure in Expressions HSA.SSE	Arithmetic with Polynomials and Rational Expressions HSAAPR	Creating Equations HSA.CED	Reasoning with Equations and Inequalities HSA.REI
Clusters/ Standards	Interpret the structure of expressions AERO.HSA.SSE.1.* DOK 1,2 Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients. b. Interpret complicated expressions by viewing one or more of their parts as a single entity.	Perform arithmetic operations on polynomials AERO.HSAAPR. 1 OK 1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	Create equations that describe numbers or relationships AERO.HSA.CED.1. DOK 1,2 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	Understand solving equations as a process of reasoning and explain the reasoning AERO.HSA.REI. 1 DOK 1,2,3 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
	AERO.HSA.SSE.2. DOK 1,2 Use the structure of an expression to identify ways to rewrite it. For example, see x^{4} $-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.		AERO.HSA.CED. $2 \quad$ DOK 1,2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	AERO.HSA.REI.2 2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
			AERO.HSA.CED.3. DOK 1,2,3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. .	
			AERO.HSA.CED.4. \quad DOK 1 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	

Domains	Seeing Structure in Expressions HSA.SSE	Arithmetic with Polynomials and Rational Expressions	Creating Equations	Reasoning with Equations and
Inequalities HSA.RER				

Domains	Seeing Structure in Expressions HSA.SSE	Arithmetic with Polynomials and Rational Expressions HSAAPR	Creating Equations HSA.CED	Reasoning with Equations and Inequalities HSA.REI
Clusters/ Standards		Use polynomial identities to solve problems AERO.HSAAPR. 4 DOK 1,2 Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $\left(x^{2}+y^{2}\right)^{2}$ $=\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2}$ can be used to generate Pythagorean triples.		Solve systems of equations AERO.HSA.REI. 5 DOK 2,3 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.
		AERO.HSAAPR.5. (+) DOK 1,2,3 Know and apply the Binomial Theorem for the expansion of $(x+y) \mathrm{n}$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.		AERO.HSA.REI.6 \quad DOK 1,2 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
				AERO.HSA.REI. 7 DOK 1,2 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=$ $3 x$ and the circle $x^{2}+y^{2}=3$.
				AERO.HSA.REI.8. (+) DOK 1 Represent a system of linear equations as a single matrix equation in a vector variable.
				AERO.HSA.REI.9. (+) FOK 1,2 Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3 $\times 3$ or greater)

Domains	Seeing Structure in Expressions HSA.SSE	Arithmetic with Polynomials and Rational Expressions	Creating Equations Clusters/ Standards	

HS Conceptual Category: Functions

Functions describe situations where one quantity determines another. For example, the return on $\$ 10,000$ invested at an annualized perce ntage rate of 4.25% is a function of the length of time the money is invested. Because we continually make theories about dependencies between quantities in nature and society, functions are important tools in the construction of mathematical models. In school mathematics, functions usually have numerical inputs and outputs and are often defined by an algebraic expression. For example, the time in hours it takes for a car to drive 100 miles is a function of the car's speed in miles per hour, v; the rule $T(v)=100 / v$ expresses this relationship algebraically and defines a function whose name is T. The set of inputs to a function is called its domain. We often infer the domain to be all inputs for which the expression defining a function has a value, or for which the function makes sense in a given context. A function can be described in various ways, such as by a graph (e.g., the trace of a seismograph); by a verbal rule, as in, "I'll give you a state, you give me the capital city;" by an algebraic expression like $f(x)=a+b x$; or by a recursive rule. The graph of a function is often a useful way of visualizing the relationship of the function models, and manipulating a mathematical expression for a function can throw light on the function's properties. Functions presented as expressions can model many important phenomena. Two important families of functions characterized by laws of growth are linear functions, which grow at a constant rate, and exponential functions, which grow at a constant percent rate. Linear functions with a constant term of zero describe proportional relationships. A graphing utility or a computer algebra system can be used to experiment with properties of these functions and their graphs and to build computational models of functions, including recursively defined functions.

Connections to Expressions, Equations, Modeling, and Coordinates. Determining an output value for a particular input involves evaluating an expression; finding inputs that yield a given output involves solving an equation. Questions about when two functions have the same value for the same input lead to equations, whose solutions can be visualized from the intersection of their graphs. Because functions describe relationships between quantities, they are frequently used in modeling. Sometimes functions are defined by a recursive process, which can be displayed effectively using a spreadsheet or other technology.

Domains	Interpreting Functions HSF.1F	Building Functions HSF.BF	Linear, Quadratic, and Exponential Models HSF.LE	Trigonometric Functions HSF.TF
Clusters/ Standards	Understand the concept of a function and use function notation Interpret functions that arise in applications in terms of the context Analyze functions using different representations	Build a function that models a relationship between two quantities Build new functions from existing functions	Construct and compare linear, quadratic, and exponential models and solve problems Interpret expressions for functions in terms of the situation they model	Extend the domain of trigonometric functions using the unit circle Model periodic phenomena with trigonometric functions Prove and apply trigonometric identities

Domains	Interpreting Functions HSF. 1 F	Building Functions HSF.BF	Linear, Quadratic, and Exponential Models HSF.LE	Trigonometric Functions HSF.TF
Clusters/ Standards	Understand the concept of a function and use function notation AERO.HSF.1F. 1 DOK 1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.	Build a function that models a relationship between two quantities AERO. HSF.BF. 1 Write a function that describes a relationship between two quantities. * a. Determine an explicit expression, a recursive process, or steps for calculation from a context. b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. c. (+) Compose functions. For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the location of the weather balloon as a function of time.	Construct and compare linear, quadratic, and exponential models and solve problems AERO.HSF.LE. 1 DOK 1,2.3 Distinguish between situations that can be modeled with linear functions and with exponential functions. a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals. b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	Extend the domain of trigonometric functions using the unit circle AERO.HSF.TF. 1 DOK 1 Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
	AERO.HSF.1F. $2 \quad$ DOK 1,2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	AERO. HSF.BF. 2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. *	AERO.HSF.LE. $2 \quad$ DOK 1,2 Construct linear and exponential functions, Construct linear and exponential fu including arithmetic and geometric sequences, given a graph, a description of a rear relationship, or two input-output pairs (include reading these from a table). context.	AERO.HSF.TF. 2 DOK 1,2 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.

Domains	Interpreting Functions HSF.1F	Building Functions HSF.BF	Linear, Quadratic, and Exponential Models HSF.LE	Trigonometric Functions HSF.TF
Clusters/ Standards	AERO.HSF.1F. 3 DOK 1 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)=$ $f(1)=1, f(n+1)$ $=f(n)+f(n-1)$ for $n \geq 1$		AERO.HSF.LE. 3 DOK 1,2 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	AERO.HSF.TF.3. (+) DOK 1,2 Use special triangles to determine geometrically the values of sine, cosine, tangent for $\Pi / 3, \Pi / 4$ and $\Pi / 6$, and use the unit circle to express the values of sine, cosine, and tangent for Π^{-x}, Π^{+x}, and $2 \Pi^{-x}$ in terms of their values for x, where x is any real number.
			AERO.HSF.LE.4 $4 \quad$ DOK 11 For exponential models, express as a logarithm the solution to $a b c t=d$ where a, c, and d are numbers and the base b is 2,10, or e e evaluate the logarithm using technology.	AERO.HSF.TF.4. (+) \quad DOK 2 Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.
	Interpret functions that arise in applications in terms of the context AERO.HSF.1F. 4 K 1,2 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *	Build new functions from existing functions AERO. HSF.BF. 3 OK 1,2 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x)$, $f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	Interpret expressions for functions in terms of the situation they model AERO.HSF.LE. 5 Interpret the parameters in a linear or exponential function in terms of a	Model periodic phenomena with trigonometric functions AERO.HSF.TF. 5 DOK 1,2 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. *

Domains	Interpreting Functions HSF. $1 F$	Building Functions HSF.BF	Linear, Quadratic, and Exponential Models HSF.LE	Trigonometric Functions HSF.TF
Clusters/ Standards	AERO.HSF.1F. 5 DOK 1,2 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if thefiu function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function \star	AERO. HSF.BF. 4 DOK 1,2 Find inverse functions. a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x^{3}$ or $f(x)=(x+1) /(x-1)$ for $x \neq 1$. b. (+) Verify by composition that one function is the inverse of another. c. (+) Read values of an inverse function from a graph or a table, given that the function has an inverse. d. (+) Produce an invertible function from a non-invertible function by restricting the domain.		AERO.HSF.TF.6. (+) DOK 1,2 Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.
	AERO.HSF.1F. 6 OK 1,2 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph	AERO. HSF.BF.5. (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.		AERO.HSF.TF.7. (+) DOK 1,2,3 Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context. *

Domains	Interpreting Functions HSF. 1 F	Building Functions HSF.BF	Linear, Quadratic, and Exponential Models HSF.LE	Trigonometric Functions HSF.TF
Clusters/ Standards	Analyze functions using different representations AERO.HSF.1F. 7 DOK 1,2 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. \star a. Graph linear and quadratic functions and show intercepts, maxima, and minima. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. d. (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior. e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.			Prove and apply trigonometric identities AERO.HSF.TF. 8 DOK 1,2,3 Prove the Pythagorean identity $\sin ^{2}(\theta)+\cos ^{2}(\theta)=$ 1 and use it to find $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ given $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ and the quadrant of the angle

Domains	Interpreting Functions HSF.1F	Building Functions HSF.BF	Linear, Quadratic, and Exponential Models HSF.LE	Trigonometric Functions HSF.TF
Clusters/ Standards	AERO.HSF.1F. 8 DOK 1,2 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=$ $(1.02)^{\mathrm{t}} y=(0.97)^{\mathrm{t}} y=(1.01)^{12 \mathrm{t}}, y=$ (1.2) ${ }^{\text {t/10 }}$, and classify them as representing exponential growth or decay.			AERO.HSF.TF. 9 (+) DOK 1,2,3 Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.
	AERO.HSF.1F. 9 DOK 1,2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum			

HS Conceptual Category: Geometry

An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts-interpreting a schematic drawing, estimating the amount of wood needed to frame a sloping roof, rendering computer graphics, or designing a sewing pattern for the most efficient use of material. Although there are many types of geometry, school mathematics is devoted primarily to plane Euclidean geometry, studied both synthetically (without coordinates) and analytically (with coordinates). Euclidean geometry is characterized most importantly by the Parallel Postulate, that through a point not on a given line there is exactly one parallel line. (Spherical geometry, in contrast, has no parallel lines.) During high school, students begin to formalize their geometry experiences from elementary and middle school, using more precise definitions and developing careful proofs.

Later in college some students develop Euclidean and other geometries carefully from a small set of axioms. The concepts of congruence, similarity, and symmetry can be understood from the perspective of geometric transformation. Fundamental are the rigid motions: translations, rotations, reflections, and combinations of these, all of which are here assumed to preserve distance and angles (and therefore shapes generally). Reflections and rotations each explain a particular type of symmetry, and the symmetries of an object offer insight into its attributes-as when the reflective symmetry of an isosceles triangle assures that its base angles are congruent. In the approach taken here, two geometric figures are defined to be congruent if there is a sequence of rigid motions that carries one onto the other. This is the principle of superposition. For triangles, congruence means the equality of all corresponding pairs of sides and all corresponding pairs of angles. During the middle grades, through experiences drawing triangles from given conditions, students notice ways to specify enough measures in a triangle to ensure that all triangles drawn with those measures are congruent. Once these triangle congruence criteria (ASA, SAS, and SSS) are established using rigid motions, they can be used to prove theorems about triangles, quadrilaterals, and other geometric figures. Similarity transformations (rigid motions followed by dilations) define similarity in the same way that rigid motions define congruence, thereby formalizing the similarity ideas of "same shape" and "scale factor" developed in the middle grades. These transformations lead to the criterion for triangle similarity that two pairs of corresponding angles are congruent. The definitions of sine, cosine, and tangent for acute angles are founded on right triangles and similarity, and, with the Pythagorean Theorem, are fundamental in many real-world and theoretical situations. The Pythagorean Theorem is generalized to nonright triangles by the Law of Cosines. Together, the Laws of Sines and Cosines embody the triangle congruence criteria for the cases where three pieces of information suffice to completely solve a triangle. Furthermore, these laws yield two possible solutions in the ambiguous case, illustrating that Side-Side-

Angle is not a congruence criterion. Analytic geometry connects algebra and geometry, resulting in powerful methods of analysis and problem solving. Just as the number line associates numbers with locations in one dimension, a pair of perpendicular axes associates pairs of numbers with locations in two dimensions. This correspondence between numerical coordinates and geometric points allows methods from algebra to be applied to geometry and vice versa. The solution set of an equation becomes a geometric curve, making visualization a tool for doing and understanding algebra. Geometric shapes can be described by equations, making algebraic manipulation into a tool for geometric understanding, modeling, and proof. Geometric transformations of the graphs of equations correspond to algebraic changes in their equations. Dynamic geometry environments provide students with experimental and modeling tools that allow them to investigate geometric phenomena in much the same way as computer algebra systems allow them to experiment with algebraic phenomena.

Connections to Equations. The correspondence between numerical coordinates and geometric points allows methods from algebra to be applied to geometry and vice versa. The solution set of an equation becomes a geometric curve, making visualization a tool for doing and understanding algebra. Geometric shapes can be described by equations, making algebraic manipulation into a tool for geometric understanding, modeling, and proof.

Domains	Congruence HSG.CO	Similarity, Right Triangles, and Trigonometry HSG>SRT	Circles HSG,CA	Expressing Geometric Properties with Equations HSG.GPE	Geometric Measurement and Dimension HSG.GMD	Modeling with Geometry HSG.MG
Clusters	Experiment with transformations in the plane Understand congruence in terms of rigid motions Prove geometric theorems Make geometric constructions	Understand similarity in terms of similarity transformations Prove theorems involving similarity Define trigonometric ratios and solve problems involving right triangles Apply trigonometry to general triangles	Understand and apply theorems about circles Find arc lengths and areas of sectors of circles	Translate between the geometric description and the equation for a conic section Use coordinates to prove simple geometric theorems algebraically	Explain volume formulas and use them to solve problems Visualize relationships between two dimensional and three-dimensional objects	Apply geometric concepts in modeling situations

Domains	Congruence HSG.CO	Similarity, Right Triangles, and Trigonometry HSG.SRT	Circles HSG.C	Expressing Geometric Properties with Equations HSG.GPE	Geometric Measurement and Dimension HSG.GMD	Modeling with Geometry HSG.MG
Clusters/ Standards	Experiment with transformations in the plane AERO.HSG.CO. 1 DOK 1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.	Understand similarity in terms of similarity transformations AERO.HSG.SRT. 1 DOK 2 Verify experimentally the properties of dilations given by a center and a scale factor: a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.	Understand and apply theorems about circles AERO.HSG.C. 1 DOK 3 Prove that all circles are similar.	Translate between the geometric description and the equation for a conic section AERO.HSG.GPE. 1 DOK 1,2,3 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.	Explain volume formulas and use them to solve problems AERO.HSG.GMD. 1 DOK 2,3 Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.	Apply geometric concepts in modeling situations AERO.HSG.MG. 1 DOK 1,2 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).

Domains	$\begin{aligned} & \text { Congruence } \\ & \text { HSG.CO } \end{aligned}$	Similarity, Right Triangles, and Trigonometry HSG.SRT	Circles HSG.C	Expressing Geometric Properties with Equations HSG.GPE	Geometric Measurement and Dimension HSG.GMD	Modeling with Geometry HSG.MG
Clusters/ Standards	AERO.HSG.CO. 2 DOK 1.2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not	AERO.HSG.SRT. 2 DOK 1,2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.	AERO.HSG.C. 2 DOK 1,2 Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; the radius intersects the circle.	AERO.HSG.GPE. 2 DOK 1,2 Derive the equation of a parabola given a focus and directrix.	AERO.HSG.GMD. 2 DOK 2,3 Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.	AERO.HSG.MG.22 DOKK 1,2 Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). \star
	AERO.HSG.CO. 3 DOK 1.2 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.	AERO.HSG.SRT. 3 DOK 2.3 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.	AERO.HSG.C. 3 DOK 2,3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle	\quad AERO.HSG.GPE.3(+) DOK 1,2 Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant	AERO.HSG.GMD. 3 DOK 1,2 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.	AERO.HSG.MG.3 DOK $2,3,4$ Apply geometric methods to solve design problems (e.g., desinging$\|$an object or structure to satisfy physical
	$\begin{aligned} & \text { AERO.HSG.CO.4 } \\ & \text { DOK 2 } \\ & \text { Develop definitions of } \\ & \text { rotations, erlections, and } \\ & \text { translations in terms of } \\ & \text { angles, circles, } \\ & \text { perpendicular lines, } \\ & \text { parallel lines, and line } \\ & \text { segments. } \end{aligned}$		AERO.HSG.C. 4 (+) DOK 2 Construct a tangent line from a point outside a given circle to the circle.			

Domains	Congruence HSG.CO	Similarity, Right Triangles, and Trigonometry HSG.SRT	Circles HSG.C	Expressing Geometric Properties with Equations HSG.GPE	Geometric Measurement and Dimension HSG.GMD	Modeling with Geometry HSG.MG
Clusters/ Standards	AERO.HSG.CO.5 DOK 1.2 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another					
	Understand congruence in terms of rigid motions AERO.HSG.CO. 6 DOK 1.2 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.	Prove theorems involving similarity AERO.HSG.SRT. 4 DOK 3 Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.	Find arc lengths and areas of sectors of circles AERO.HSG.C. 5 DOK 1,2,3 Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.	Use coordinates to prove simple geometric theorems algebraically AERO.HSG.GPE. 4 DOK 3 Use coordinates to prove simple geometric theorems algebraically.).	Visualize relationships between twodimensional and three dimensional objects AERO.HSG.GMD. 4 DOK 1,2 Identify the shapes of twodimensional cross- sections of three dimensional objects, and identify threedimensional objects generated by rotations of two-dimensional objects.	

Domains	Congruence HSG.CO	Similarity, Right Triangles, and Trigonometry HSG.SRT	Circles HSG.C	Expressing Geometric Properties with Equations HSG.GPE	Geometric Measurement and Dimension HSG.GMD	Modeling with Geometry HSG.MG
Clusters/ Standards	AERO.HSG.CO. 7 DOK 2.3 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.	AERO.HSG.SRT. 5 DOK 1,2,3 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.		AERO.HSG.GPE. 5 DOK 1,2 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).		
	AERO.HSG.CO. 8 DOK 2,3 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions			AERO.HSG.GPE. 6 DOK 1,2 Find the point on a directed line segment between two given points that partitions the segment in a given ratio		
				AERO.HSG.GPE. 7 DOK 1,2 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.		

Domains	Congruence HSG.CO	Similarity, Right Triangles, and Trigonometry HSG.SRT	Circles HSG.C	Expressing Geometric Properties with Equations HSG.GPE	Geometric Measurement and Dimension HSG.GMD	Modeling with Geometry HSG.MG
Clusters/ Standards	Prove geometric theorems AERO.HSG.CO. 9 DOK 3 Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of exactly those equidistant from the segment's endpoints.	Define trigonometric ratios and solve problems involving right triangles AERO.HSG.SRT. 6 DOK 1,2 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.				
	AERO.HSG.CO. 10 DOK 3 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.	AERO.HSG.SRT. 7 DOK 1,2 Explain and use the relationship between the sine and cosine of complementary angles.				

Domains	$\begin{aligned} & \text { Congruence } \\ & \text { HSG.CO } \end{aligned}$	Similarity, Right Triangles, and Trigonometry HSG.SRT	Circles HSG.C	Expressing Geometric Properties with Equations HSG.GPE	Geometric Measurement and Dimension HSG.GMD	Modeling with Geometry HSG.MG
Clusters/ Standard s	AERO.HSG.CO. 11 DOK 3 Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals	AERO.HSG.SRT. 8 DOK 1,2 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. *				
	Make geometric constructions AERO.HSG.CO. 12 DOK 2 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.).	Apply trigonometry to general triangles AERO.HSG.SRT. 9. DOK 2,3 (+) Derive the formula $A=$ $1 / 2 a b \sin (\mathrm{C})$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.				
	AERO.HSG.CO. 13 DOK 2 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.	$\|$AERO.HSG.SRT.10.(+) DOK $1,2,3$ Prove the Laws of Sines and Cosines and use them to solve problems.				

Domains	Congruence HSG.CO	Similarity, Right Triangles, and Trigonometry HSG.SRT	Circles HSG.C	Expressing Geometric Properties with Equations HSG.GPE	Geometric Measurement and Dimension HSG.GMD	Modeling with Geometry HSG.MG
Clusters/ Standards		AERO.HSG.SRT.11(+) DOK 1,2 Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g.,surveying problems, resultant forces).				

HS Conceptual Category: Statistics and Probability

Decisions or predictions are often based on data-numbers in context. These decisions or predictions would be easy if the data always sent a clear message, but the message is often obscured by variability. Statistics provides tools for describing variability in data and for making informed decisions that take it into account. Data are gathered, displayed, summarized, examined, and interpreted to discover patterns and deviations from patterns. Quantitative data can be described in terms of key characteristics: measures of shape, center, and spread. The shape of a data distribution might be described as symmetric, skewed, flat, or bell shaped, and it might be summarized by a statistic measuring center (such as mean or median) and a statistic measuring spread (such as standard deviation or interquartile range).Different distributions can be compared numerically using these statistics or compared visually using plots. Knowledge of center and spread are not enough to describe a distribution. Which statistics to compare, which plots to use, and what the results of a comparison might mean, depend on the question to be investigated and the real-life actions to be taken. Randomization has two important uses in drawing statistical conclusions. First, collecting data from a random sample of a population makes it possible to draw valid conclusions about the whole population, taking variability into account. Second, randomly assigning individuals to different treatments allows a fair comparison of the effectiveness of those treatments. A statistically significant outcome is one that is unlikely to be due to chance alone, and this can be evaluated only under the condition of randomness. The conditions under which data are collected are important in drawing conclusions from the data; in critically reviewing uses of statistics in public media and other reports, it is important to consider the study design, how the data were gathered, and the analyses employed as well as the data summaries and the conclusions drawn. Random processes can be described mathematically by using a probability model: a list or description of the possible outcomes (the sample space), each of which is assigned a probability. In situations such as flipping a coin, rolling a number cube, or drawing a card, it might be reasonable to assume various outcomes are equally likely. In a probability model, sample points represent outcomes and combine to make up events; probabilities of events can be computed by applying the Addition and Multiplication Rules. Interpreting these probabilities relies on an understanding of independence and conditional probability, which can be approached through the analysis of two-way tables. Technology plays an important role in statistics and probability by making it possible to generate plots, regression functions, and correlation coefficients, and to simulate many possible outcomes in a short amount of time.

Connections to Functions and Modeling. Functions may be used to describe data; if the data suggest a linear relationship, the relationship can be modeled with a regression line, and its strength and direction can be expressed through a correlation coefficient.

Domains	Interpreting Categorical and Quantitative Data HSS.ID	Making Inferences and Justifying Conclusions	Conditional Probability and the Rules of Probability	Using Probability to Make
Decisions HSS.MD				

Domains	Interpreting Categorical and Quantitative Data HSS.ID	Making Inferences and Justifying Conclusions HSS.IC	Conditional Probability and the Rules of Probability HSS.CP	Using Probability to Make Decisions HSS.MD
Clusters/ Standards	Summarize, represent, and interpret data on a single count or measurement variable AERO.HSS.ID. 1 DOK 1,2 Represent data with plots on the real number line (dot plots, histograms, and box plots).	Understand and evaluate random processes underlying statistical experiments AERO.HSS.IC. 1 DOK 1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population.	Understand independence and conditional probability and use them to interpret data AERO.HSS.CP. 1 DOK 1,2 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	Calculate expected values and use them to solve problems AERO.HSS.MD.1. (+) DOK 1,2 Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.
	AERO.HSS.ID. $2 \quad$ DOK 1,2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	AERO.HSS.IC. 2 DOK 1,2 Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5 . Would a result of 5 tails in a row cause you to question the model	AERO.HSS.CP. $2 \quad$ DOK 1 Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.	AERO.HSS.MD.2. (+) DOK 1,2 Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.
	AERO.HSS.ID. 3 DOK 1,2 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).		AERO.HSS.CP. 3 DOK 1,2 Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.	AERO.HSS.MD.3. (+) DOK 1,2,3 Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value.

Domains	Interpreting Categorical and Quantitative Data HSS.ID	Making Inferences and Justifying Conclusions HSS.IC	Conditional Probability and the Rules of Probability HSS.CP	Using Probability to Make Decisions HSS.MD
Clusters/ Standards	AERO.HSS.ID. 4 DOK 1,2 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.		AERO.HSS.CP. 4 DOK 1,2 Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two- way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.	AERO.HSS.MD.4. (+) DOK 1,2,3 Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value.
			AERO.HSS.CP. 5 DOK 1,2,3 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.	

Domains	Interpreting Categorical and Quantitative Data HSS.ID	Making Inferences and Justifying Conclusions HSS.IC	Conditional Probability and the Rules of Probability HSS.CP	Using Probability to Make Decisions HSS.MD
Clusters/ Standards	Summarize, represent, and interpret data on two categorical and quantitative variables AERO.HSS.ID. 5 DOK 1.2 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies).	Make inferences and justify conclusions from sample surveys, experiments, and observational studies AERO.HSS.IC. 3 DOK 1,2 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.	Use the rules of probability to compute probabilities of compound events in a uniform probability model AERO.HSS.CP. 6 DOK 1,2 Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A, and interpret the answer in terms of the model.	Use probability to evaluate outcomes of decisions AERO.HSS.MD.5. (+) DOK 1,2,3 Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values. a. Find the expected payoff for a game of chance. b. Evaluate and compare strategies on the basis of expected values.
	AERO.HSS.ID. 6 DOK 1,2 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. b. Informally assess the fit of a function by plotting and analyzing residuals. c. Fit a linear function for a scatter plot that suggests a linear association.	AERO.HSS.IC. 4 DOK 2 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.	AERO.HSS.CP. $7 \quad$ DOK 1,2 Apply the Addition Rule, $\mathrm{P}(\mathrm{A}$ or B$)=$ $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$, and interpret the answer in terms of the model.	AERO.HSS.MD.6. (+) DOK 1,2 Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).

Domains	Interpreting Categorical and Quantitative Data HSS.ID	Making Inferences and Justifying Conclusions HSS.IC	Conditional Probability and the Rules of Probability HSS.CP	Using Probability to Make Decisions HSS.MD
Clusters/ Standards		AERO.HSS.IC. 5 DOK 2,3 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.	AERO.HSS.CP.8. (+) DOK 1,2 Apply the general Multiplication Rule in a uniform probability model, $\mathrm{P}(\mathrm{A}$ and B$)$ $=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{A} \mid \mathrm{B})$, and interpret the answer in terms of the model.	AERO.HSS.MD.7. (+) DOK 2,3 Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).
		AERO.HSS.IC. 6 DOK 2.3 Evaluate reports based on data.	AERO.HSS.CP.9. (+) DOK 1,2 Use permutations and combinations to compute probabilities of compound events and solve problems.	
	Interpret linear models AERO.HSS.ID. 7 DOK 1,2 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.			
	AERO.HSS.ID. $8 \quad$ DOK 1,2 Compute (using technology) and interpret the correlation coefficient of a linear fit.			
	AERO.HSS.ID. $9 \quad$ DOK 1,2 Distinguish between correlation and causation.			

